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Abstract: In order to remain profitable, commercial maritime ports must
maintain high throughput of inbound vessels. The gantry cranes that load
and unload the vessels are the primary point of interaction between a vessel
and the port, which cause a critical bottleneck in the process flow. Errors in
this segment of the process cause cascading delays which ultimately cause
vessel service backlogs, extending to logistical delays in moving shipping
containers across land and rail as well. This is to the detriment of the
ports, which lose popularity among shipping lines and may even be fined
for causing sub-optimal delays. This work expands on prior work in using
a multi-objective genetic algorithm to optimise the parameters of a fuzzy
system which controls port-side resource deployment. In contrast to existing
solutions, this resource deployer is able to function online and adapt to
real-world faults while still maintaining superior performance as compared
to industry practice. Further, proposals to expand or reduce the port-side
infrastructure are computed.
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1 Introduction

Maritime trade comprises nearly nine tenths of global trade (Cheraghchi et al., 2017).
As a result, commercial maritime ports form a choke point in the overarching global
trade process. Port operations are varied and include controlling the surrounding water
space to coordinate marine traffic, internal security, repair and maintenance, etc. The
primary point of contact of a container ship with the port, from the perspective of global
trade is the ship-to-shore gantry crane (or quay crane) which unloads containers from
the inbound vessel and loads new containers onto the outbound vessel. This process of
unloading and loading containers from a vessel is referred to here as a vessel service.
Consequently, the time required to complete vessel service is the vessel service time.
This vessel service is performed by quay cranes, which require operating personnel as
well as other supporting equipment and personnel such as internal shunt trucks, fork
lifts, spotters, checkers, etc. all of which make up the deployable port side resources.

A naive method to ensure maximised service throughput is to maximise resource
deployment so that all incoming vessel service loads are handled at the port’s maximum
bandwidth. However, deploying resources comes at the cost of equipment operating
costs (including machine wear), and personnel wages. More importantly (from an
optimisation perspective), while machine operating costs scale very well with incoming
loads (since there are no costs associated with non-operating equipment), personnel are
deployed on a per-shift basis which requires the system to bear the cost of an entire
shift’s crew wage even if the equipment is used only for a fraction of that shift.

A static vessel arrival schedule allows for the analytic optimisation of the port-side
resource deployment to handle the incoming vessel service loads. However, since
schedules are temporally continuous, not bound by any end time, and subject to
unexpected change, such offline, analytical optimisation would be rigid, brittle, and
expensive in its need to be performed on each schedule change. A more dynamic
approach with an optimised fuzzy system would be less computationally expensive to
deploy and more flexible in its ability to adapt to changes in vessel arrival and therefore
service schedules.
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Such continually adaptive systems fall under level 4 of the data fusion model
proposed by the Joint Directors of Laboratories’ (JDL’s) Data Fusion Information Group
(DFIG) (Blasch et al., 2012) and is used in this work. The resource deployment is
controlled by a fuzzy system while the parameters of this fuzzy system are optimised by
a genetic algorithm (GA). During the process of this optimisation, the fuzzy system is
evaluated on the total time required to service all vessels and on the number of port-side
personnel crews required to perform the vessel service given the deployment.

The remainder of this paper is organized as follows: some introductory background
material and prior work are presented in Section 2 and the methodology used is specified
in Section 3. The results of the proposed methodology are presented in Section 4 and
some concluding remarks and directions of future work are presented in Section 5.

2 Previous work

Presented in this section are brief introductions to the relevant background material and
observations of prior solutions to similar problems.

2.1 Data fusion

Methods to improve optimisation processes fall under level 4 (process refinement) of
the data fusion model of the DFIG of the JDLs. This level of the data fusion model
is an abstraction over level 3 (impact assessment and course of action generation) and
works to improve the processes at these levels with regards to their efficacy of their
outputs and well as the efficiency with which they are generated. This optimization is
guided by measures of effectiveness (MOEs) and measures of performance (MOPs),
which describe the optimality of a given process-optimised solution (Blasch et al., 2012).

2.2 Fuzzy systems

Fuzzy systems allow for the implementation of control systems using precise digital
measurements which may fall into imprecisely, linguistically described rules. For
instance, the rule “if it is cold, increase the temperature on the thermostat”
is a clear linguistic instruction with no precise machine-operable counterpart. As a result,
layers of fuzzification and defuzzification are built to respectively map precise values
measured by sensors to linguistically described sets such as ‘cold’ and ‘hot’ and map
imprecise instructions such as ‘increase the temperature on the thermostat’ to
a precise, machine actionable value such as ‘+0.3◦C’.

As such, a fuzzy system is comprised of three components: a fuzzifier, a defuzzifier,
and an inference engine. The Mamdani fuzzy system used in this work is described in
this section.

The fuzzy system is optimised to determine resource deployment at a given instance.
Therefore, the inputs to the fuzzy system are

1 the current container processing load

2 the difference in the container processing load between the current and the
previous shift.
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These inputs determine whether the load is light or heavy, and whether it is increasing
or decreasing. Since the personnel deployment can be determined only on a per-shift
basis, the resource deployment provided by the fuzzy system must be recalculated at a
frequency no greater than at each shift change. An example of the degree of membership
of the measured load is computed to each of the linguistically descriptive sets of ‘low’,
‘medium’, and ‘high’ load as shown in Figure 1, and the parameters of this membership
function are optimised by the GA described in Subsection 2.3. Additionally, the change
in load is computed at the end of each shift as the difference between the number
of containers to be processed at the start of the shift, and the sum of the number of
containers remaining to be processed and the shift and the number of containers to be
processed on any incoming vessels during this shift. The memberships of the change
in processing load are also mapped to the linguistic sets ‘negative change’, ‘minimal
change’, and ‘positive change’.

Figure 1 Fuzzy membership functions to ‘low’, ‘medium’, and ‘high’ load (see online version
for colours)

Once these memberships are computed, the fuzzy inference engine computes the
amplitude of resource deployment based on the following rule set:

1 If delay is low and delta delay is low, decrease deployment.

2 If delay is medium and delta delay is low, decrease deployment.

3 If delay is high and delta delay is low, maintain deployment.

4 If delay is low and delta delay is unchanging, decrease deployment.

5 If delay is medium and delta delay is unchanging, maintain deployment.

6 If delay is high and delta delay is unchanging, increase deployment.

7 If delay is low and delta delay is high, increase deployment.

8 If delay is medium and delta delay is high, increase deployment.

9 If delay is high and delta delay is high, increase deployment.
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Having calculated the fuzzy membership functions and the inference engine, the fuzzy
system uses a centre-of-gravity calculation to compute the resource deployment.

2.3 Multi-objective GAs

GAs haven been used in numerous optimisation applications (Xu et al., 2019; Teske
et al., 2017; Suri and Vijay, 2019; Rey Horn et al., 1994; Li et al., 2019; Davis, 1991).
These require a descriptive structure of the solution, and a method for creating multiple
such solutions to form a population of randomly generated individuals; and a method
of evaluating a given encoded solution. Once evaluated, the individuals are ranked on
a [0, 1] scale and are selected in some way that correlates with their fitness relative to
the other individuals in the population. Once individuals have been selected, parts of
their encoded solution structures are copied over to form new ‘child’ individuals that
become part of the next generation of the population. This process is repeated for many
generations until some termination condition is met. Typically, a termination condition
describes a minimum solution quality and/or a time limit.

It is important to note that a multi-objecive GA (MOGA) differs from a regular GA
in that the range of its fitness function lies in a multi-dimensional space. Therefore, the
notion of non-dominance is important to discuss. Two solutions are non-domminated
if one individual’s fitness values do not outperform the other’s in all dimensions. For
example, suppose individuals A, and B are evaluated in a two-dimensional fitness
plane, with fitness measures f(A) =< 1, 2 > and f(B) =< 2, 1 > where each fitness
objective is required to be minimised. Then, neither A nor B dominates the other as they
each outperform the other in one of the two objectives. On the other hand, if individuals
C and D had fitness measures f(C) =< 2, 2 > and f(D) =< 2, 1 >, then it is clear
that D dominates C since D’s fitness values are at least as optimal as C’s on each
fitness dimension. Therefore, selection and fitness ranking in a MOGA are performed
on a multi-dimensional fitness landscape with non-dominated fitness ‘fronts’. GAs and
MOGAs have also been used to optimise fuzzy systems (Teske et al., 2017), to optimise
the various parameters of the fuzzy system.

Methodologies used in such optimisations are adopted in this work and the specifics
of the GA used in this study are described in Subsection 3.2.

2.4 Resource deployment

Fuzzy controllers have been used to dynamically allocate resources in large-scale job
scheduling environments with strict job completion deadlines Cheng et al. (2015). This
was performed by phrasing the job scheduling problem as a prediction optimisation
problem of job completion times given resource availability. The estimator that predicts
job completion time is formulated as a fuzzy system that considers the job requirements
and resource availability as inputs to output a deadline-aware scheduling for a given
job. Others have suggested a continuously evolving fuzzy system to circumvent the
limitations of rule bases fixed at design time, that therefore fall short of changing
objectives Jamshidi et al. (2016). While this methodology is impressive and powerful,
the authors note that it is in excess of the requirements of problems similar to the one
studied here (deploying existing resources to meet queued demand); and approaches
from classical0 control theory will still suffice. Wang et al. (2011) do indeed use such
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a fuzzy system to adaptively deploy resources to handle database load within a virtual
environment to handle incoming query loads. This system also updates online, making
it reactively adaptive to dynamic workloads.

Existing solutions to resource deployment in the maritime space suffer from being
offline, i.e., they require a priori knowledge of incoming vessel schedules and their
respective service load requirements. Some of these have been formulated as mixed
integer programming (MIP) problems (Zhang et al., 2002), while others have attempted
a job scheduling formulation with a homogenouos pool of processors (Peterkofsky and
Daganzo, 1990). Both methods require prior knowledge of incoming vessel schedules
and service requirements, which is inconsistent with real-world practice. Moreover,
these methods are unable to adapt to changing vessel schedules and operational
faults such as delays in vessel arrival times [often caused by unfavorable weather
conditions, etc. (Cheraghchi et al., 2017)]. Finally, GAs have been used in optimising
resource deployment and scheduling Wesolkowski et al. (2014), but only in an offline
fashion yet again. The methodology presented in this work proves to be robust against
vessel schedule changes, while maintaining high service throughput and simultaneously
minimising operational cost.

3 Methodology

The methodologies employed in this study to acquire data and perform the optimisation
are discussed in this section.

3.1 Dataset

Maritime vessels are required by law to broadcast information about their geospatial
location, the type of cargo onboard, speed, destination, vessel draught, etc. including
a unique identifier, in a standardised automated information system (AIS) data packet
(Perez et al., 2009). These are then gathered by terrestrial or satellite receivers.
Correlating each vessel’s AIS packets yields a comprehensive track of the vessel’s
voyage over time. Plotting this on a map (using any geographic information system)
shows the time at which a vessel arrived and departed a port. Filtering for such segments
in vessel tracks shows the ground truth vessel service time, mined from real-world
data. Further, filtering these tracks by proximity to known ports such as the Port of
Halifax, and the Port of Hong Kong gives the vessel service time specific to each port,
which can then be used by the optimisation algorithm described in Subsection 3.2. Still,
this does not account for vessels that may simply pass by the port, without being
serviced, which is why an additional filter is used to capture only vessels that are
stationery in the given time period, as having a vessel speed of 0.5 knots or lower
(Abualhaol et al., 2018).

Finally, the vessel’s draught before and after service are computed and the vessel’s
size (length and width) is read from the AIS packets. With this information, the total
volume of displaced water is computed, which when multiplied by the density of
water, gives the mass of displaced sea water. In the absence of any further information
describing the mass of fuel and ballast on board the vessel, the mass of the displaced
water is assumed to be the mass of the containers and cargo on board. When divided
by the mass of a cargo-filled shipping container drawn from the normal distribution
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N (µ = 75, σ = 10), this yields an estimate of the number of containers on board the
vessel. Adding together the number of containers that entered the port and the number of
containers that left (making the assumption that all of a vessel’s containers are unloaded
and all the containers it leaves port with are new containers that were loaded at port)
gives the number of containers that comprised vessel service.

Given that a container is serviced by a single crane in two minutes (Zhang et al.,
2002), it is possible to sum the serviced containers per shift to mine the real-world
resource deployment, to use as a benchmark in optimisation.

It is also known that ports internally publish daily situation reports describing the
day’s loads and projected loads for the following day. Using this information source
could prove to be useful in predicting upcoming service loads and lead to more accurate
resource deployment. However, this comes with the computational cost of requiring the
addition of a natural language processing (NLP) module to extract information from
soft, unstructured, daily logs. The procedure to perform this information extraction is
described in Subsection 3.2.

Finally, AIS data is gathered from multiple sources and is subsequently fused
and correlated, as previously discussed. This affords the opportunity to determine the
usefulness of each data source independently of the others. In order to evaluate the
usefulness of a data source, data from different sources are ingested separately for
an independent run of the optimisation. The results of these independent runs of the
optimisation are then compared against the results from the optimisation performed with
the combined data from all sources. The expectation is that the performance of the
optimisation using individual data sources would perform sub optimally as compared to
using the combined data from all sources.

3.2 Optimisation

The GA used to optimise the fuzzy membership functions described in Figure 1 is
specified in this section. The GA uses individuals with three chromosomes each, to
specify the membership functions to low, medium, and high vessel service loads.
Further, each individual that encodes a fully specified fuzzy system is evaluated by
simulating known incoming vessel loads to determine the optimality with which the
vessel service is performed.

3.2.1 Individual structure

Each individual is encoded with three chromosomes. Each chromosome respectively
encodes for membership to low, medium, and high container load. An example
of this is shown in Table 1. Each of these individuals specifies the trapezoidal
membership function of a given container load to ‘low’, ‘medium’, or ‘high’ load. The
actualisation of these chromosomal values to the membership functions are governed by
equations (1), (2) and (3).

mem low(x) =


1 x < A
100−100x

17 A ≤ x < B

0 B ≤ x

(1)
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mem med(x) =


0 x < A

6
|x− 1

2 |
A ≤ x < B

0 C ≤ x

(2)

mem high(x) =


1 x < B
100x−100

17 B ≤ x < C

0 C ≤ x

(3)

Table 1 Chromosomal structure for trapezoidal individual

A B C D

µlow 0.33 0.5 0.66 1
µmedium 0.33 0.5 0.66 1
µhigh 0.33 0.5 0.66 1

3.2.2 Fitness

The fitness of an individual in the MOGA is a point on a two-dimensional fitness
landscape describing the number of equipment and personnel crews to be used and the
total time required to service all vessels. Both of these objectives must be minimised.
Given an individual that describes the fuzzy membership function, the fuzzy system
is created, and the mined vessel arrival is simulated. Additionally, daily situation
reports are generated as part of the simulation, by sampling the language used in
known situation reports. Therefore, if the load is projected to increase (as seen in the
simulation), a situation report with exaggerative adjectives describing increased load is
generated and vice versa.

3.2.3 Selection

The selection mechanism yields two individuals for mating operations (crossover and
mutation). Since the optimal fitness is unknown, the individuals in the population are
sorted into fitness fronts. Each individual is selected independently at random from a
given fitness front. The fitness front itself is selected in such a way as to correlate with
the front’s relative optimality. Therefore, the probability of a front being selected (from
which an individual will be selected) is i

i+1 for front i. This gives each front a linearly
scaled probability of being selected, with front 1 (the Pareto front) having probability
0.5 of being selected.

3.2.4 Crossover

The two individuals returned by the selection mechanism are then mated. Since the
fitness describes the optimality of the individual, the child individual would benefit
from an interpolated encoding that is influenced by both parent individuals, weighted
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by their respective fitness measures. However, since weighting is a scalar operation
and the fitness measure resides in a two dimensional space, a scalarisation technique
is used to plot the fitness in a one dimensional space [as seen in equations (4) and
(5)]. The resultant value of the child individual is therefore the fitness weighted average
of the corresponding values of the parent individuals. An example of this is seen in
Table 2. Note that since this is an averaging operation, the result of crossover is one
child individual, as opposed to classical crossover operators which yield two or more
child individuals.

Fi =

∑|P |
x=1 FiPx

|P |
(4)

Fr(Px) =
1

2
·

[
2∑

i=1

Fi(Px)− Fi

]
(5)

where

Fr is the relative fitness measure

Fi(Px) is the fitness of individual Px along objective i

P is the population of all individuals

Table 2 Example crossover

(a) Parent individual P1 (Fr = 1)

A B C D

µlow 0.33 0.5 0.66 1
µmedium 0.33 0.5 0.66 1
µhigh 0.33 0.5 0.66 1

(b) Parent individual P2 (Fr = 3)

A B C D

µlow 0 0.5 0.66 1
µmedium 0 0.5 0.66 1
µhigh 0 0.5 0.66 1

(c) Child individual

A B C D

µlow 0.0825 0.5 0.66 1
µmedium 0.0825 0.5 0.66 1
µhigh 0.0825 0.5 0.66 1

3.2.5 Mutation

The mutation operator randomly changes the value of a randomly selected element in
the individual’s chromosomal structure. A random chromosome is first chosen, and then
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a random index in that chromosome. The value at that index of the chromosome is then
altered to a different number within the range defined by the other numbers on either
side. An example of this is shown in Table 3.

Table 3 Example mutation (notice the changed B value in µmedium)

(a) Original individual

A B C D

µlow 0.33 0.5 0.66 1
µmedium 0.33 0.5 0.66 1
µhigh 0.33 0.5 0.66 1

(b) Mutant (mutated B value in µmedium)

A B C D

µlow 0.33 0.5 0.66 1
µmedium 0.33 0.45 0.66 1
µhigh 0.33 0.5 0.66 1

3.2.6 Termination

Since the optimal solution is not known a priori, the MBGM termination criterion is
used (Mart́ı et al., 2007). This methodology tracks the number of generations since the
last time a new Pareto front was created. If at any point in time, more generations have
passed than twice as many as the maximum number of generations between the creation
of a new Pareto front, then the MOGA is labelled as having reached a steady state and
unlikely to yield further optimisations. The algorithm therefore terminates, returning the
Pareto front of the last generation as the result of evolution.

3.2.7 Result

The result of the optimisation is a Pareto front of individuals with non-dominated fitness
values. The actual values seen in this Pareto for each of the three ports of interest are
discussed in Section 4.

3.3 Evaluating data sources

Multiple independent data sources were found in the correlated data. Two of these data
sources each contained a comparably large fraction of the combined data, making them
fitting candidates for this study. The distribution of records per data source is specified
in Table 10 and illustrated in Figure 7. Data from these two sources were extracted
from the dataset to form two smaller, independent datasets upon which the optimisation
was rerun. The results of the running the optimisation on these datasets are discussed
in Section 4.
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4 Results

The results from deploying the optimisation on the dataset for three ports of interest are
presented in this section. As well, the results of evaluating the optimality of the two
data sources mentioned in Subsection 3.3 are presented here.

4.1 Vessel service optimisation

Thirty independent runs of the optimisation were performed to collect statistically
significant data. The mean and 95% confidence intervals are reported in this section

The vessel service optimisation was performed on three separate ports of interest,
namely Port of Montreal [from a previous study (Panchapakesan et al., 2019)], Port
of Halifax, and Port of Hong Kong. Previous studies have shown that at the Port
of Montreal, the optimisation yields significant performance improvements in vessel
service time.

4.1.1 Port of Montreal

The results of the optimisation performed on the Port of Halifax are shown in Table 4.
The characteristics of the evolved fuzzy system that yielded this performance are shown
in Table 5 and the fuzzy system it describes is illustrated in Figure 2.

Table 4 Performance of evolved fuzzy systems for Port of Montreal

Mined, real-world performance Optimised performance

Number of crews used 63 23.654 ± 0.05
Total service time 77 days, 12 hours, 51 min, and 55 sec. 4 days, 4 hours, 27 min, 53 sec

Table 5 Mean characteristics of evolved fuzzy systems for Port of Montreal

Delay µlow µmedium µhigh

A 0 0 0.377 ± 0.008
B 0 0.289 ± 0.008 0.682 ± 0.009
C 0.366 ± 0.009 0.529 ± 0.01 1
D 0.690 ± 0.008 0.771 ± 0.007 1

∆ delay µlow µmedium µhigh

A –1 –1 –0.170 ± 0.019
B –1 –0.311 ± 0.017 0.446 ± 0.017
C –0.188 ± 0.018 0.135 ± 0.017 1
D 0.373 ± 0.016 0.570 ± 0.015 1
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Figure 2 Mean fuzzy membership functions for Port of Montreal (see online version
for colours)

4.1.2 Port of Halifax

The results of the optimisation performed on the Port of Montreal are shown in Table 6.
The characteristics of the evolved fuzzy system that yielded this performance are shown
in Table 7 and the fuzzy system it describes is illustrated in Figure 3. A sample of the
optimised vessel schedule is shown in Figure 4.

Table 6 Performance of evolved fuzzy systems for Port of Halifax

Mined, real-world performance Optimised performance

Number of crews used 33 3
Total service time 12 days, 11 hours, 50 minutes, 9 hours, 17 minutes, 54 seconds

41 seconds

Table 7 Mean characteristics of evolved fuzzy systems for Port of Halifax

Delay µlow µmedium µhigh

A 0 0 0.4 ± 0.009
B 0 0.32 ± 0.008 0.72 ± 0.007
C 0.29 ± 0.009 0.56 ± 0.009 1
D 0.68 ± 0.009 0.76 ± 0.007 1

∆ delay µlow µmedium µhigh

A –1.0 –1.0 –0.2 ± 0.019
B –1.0 –0.31 ± 0.018 0.38 ± 0.017
C –0.33 ± 0.018 0.09 ± 0.017 1.0
D 0.35 ± 0.16 0.54 ± 0.014 1.0
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Figure 3 Mean fuzzy membership functions for Port of Halifax (see online version
for colours)

Figure 4 Optimised service schedule for the Port of Halifax (see online version for colours)

4.1.3 Port of Hong Kong

The results of the optimisation performed on the Port of Hong Kong are shown in
Table 8. The characteristics of the evolved fuzzy system that yielded this performance
are shown in Table 9 and the fuzzy system it describes is illustrated in Figure 5. A
sample of the optimised vessel schedule is shown in Figure 6.
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Table 8 Performance of evolved fuzzy systems for Port of Hong Kong

Mined, real-world performance Optimized performance

Number of crews used 88 23.097 ± 0.03
Total service time 73 days, 10 hours, 57 hours, 1 day, 15 hours, 18 minutes,

7 seconds 48 seconds

Table 9 Mean characteristics of evolved fuzzy systems for port of Hong Kong

Delay µlow µmedium µhigh

A 0 0 0.35 ± 0.008
B 0 0.29 ± 0.007 0.67 ± 0.009
C 0.34 ± 0.01 0.53 ± 0.008 1
D 0.67 ± 0.008 0.75 ± 0.007 1

∆ delay µlow µmedium µhigh

A –1.0 –1.0 –0.27 ± 0.017
B –1.0 –0.39 ± 0.017 0.37 ± 0.016
C –0.36 ± 0.017 0.09 ± 0.017 1.0
D 0.30 ± 0.018 0.48 ± 0.017 1.0

Table 10 Distribution of records by data source

Source Number of records

Source 1 4,048,309
Source 2 2,243
Source 3 408
Source 4 12,051
Source 5 3,932,275
Source 6 1

Figure 5 Mean fuzzy membership functions for Port of Hong Kong (see online version
for colours)
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Figure 6 Optimised service schedule for the Port of Hong Kong (see online version
for colours)

4.2 Data source selection

In order to meaningfully select between data sources, each data source was evaluated
for its quality. The optimality of a data source is determined by training a model on
data exclusively from this source and testing the performance of the trained model.
The training and testing were performed in the same methodology as described in
Subsection 3.2. In order to create the datasets for each data source, the original dataset
was split into six sets, each one corresponding to one of the six AIS data sources
present in the original dataset. The number of records from each data source is shown in
Figure 7. Since sources 1 and 5 each have approximately 50% of all the records in the
entire dataset, they were used for this analysis. On the other hand, since sources 2, 3, 4,
and 6 contained a negligible number of AIS records, they did not provide sufficiently
many records to perform this analysis and were preemptively filtered out.

With the separated data from sources 1 and 5, three datasets were created. The first
contained data from only source 1, the second from only source 5, and the last from
both sources 1 and 5. Next, three models were evolved using the same methodology
as described in Subsection 3.2, one using each of the three new datasets. The resulting
models were then run to determine the two-dimensional fitness values of their respective
performances, so that they could be compared. The quality of each data source is
measured as the optimality of the model resulting from training on the corresponding
dataset. Since each data source accounts for approximately half the data in the original
dataset, the equivalent of a model trained on the original dataset is expected to complete
vessel service in approximately half the time with approximately half the resource
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deployment. This is therefore the benchmark against which models trained on either
dataset will be compared. This expectation is shown in Table 11.

Figure 7 Distribution of records by data source (see online version for colours)

Table 11 Optimiser performance expectation

(a) Port of Montreal

Optimised performance Optimiser expectation
(with all data sources) (with source 1 or 5)

Number of crews used 23.654 ± 0.05 11.827 ± 0.03
Total service time 4 days, 4 hours, 27 min, 2 days, 2 hours, 13 min,

53 sec 56 sec

(b) Port of Halifax

Optimised performance Optimiser expectation
(with all data sources) (with source 1 or 5)

Number of crews used 3 2
Total service time 9 hours, 17 minutes, 4 hours, 38 minutes,

54 seconds 57 seconds

(c) Port of Hong Kong

Optimised performance Optimizer expectation
(with all data sources) (with source 1 or 5)

Number of crews used 23.097 ± 0.03 11.549 ± 0.02
Total service time 1 day, 15 hours, 18 minutes, 19 hours, 39 minutes,

48 seconds 24 seconds

In contrast to the expectations laid out in Table 11, the results of the optimisation
performed on these datasets is shown in Table 12. The results show that source 1
is of better quality than source 5 since the fitness of the optimiser trained with data
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from it dominates the fitness of the optimiser trained on data from source 5. However,
considering that source 1 describes fewer vessel service instances than source 5
(see Table 13), it is possible to attribute this performance improvement to sample bias.
Investigating this would require a larger dataset from sources 1 and 5, which are left as
areas of further study that are out of the scope of the current work.

Table 12 Optimisation results on split datasets

(a) Optimisation results

Data source Number of crews used Total service time

Real-world performance 63 77 days, 12 hours, 51 min,
55 sec.

Optimisation using all data sources 23.654 ± 0.05 4 days, 4 hours, 27 min,
53 sec

Optimisation using data source 1 9.26 ± 0.03 1 day, 8 hours, 15 min,
41 sec

Optimisation using data source 5 12.27 ± 0.04 1 day, 16 hours, 46 min,
54 sec

Optimisation using data sources 1 22.367 ± 0.05 4 days, 3 hours, 14 min,
and 5 56 sec

(b) Comparison to expectations

Data source Improvement on crew Improvement on total service
usage time

Optimisation using data source 1 21.7% 35.78%
Optimisation using data source 5 –3.8% 18.81%
Optimisation using data sources 1 5.4% 1.21%
and 5

Table 13 Vessel services per dataset

Data source Number of usable vessel services to optimise

All data sources 27
Data source 1 15
Data source 5 22
Data sources 1 and 5 27

Sample bias in source 1 aside, the results show an improvement in the trained model
when using data from both sources 1 and 5. This improvement confirms that excluding
sources 2, 3, 4, 6 from the training data does improve the performance of the optimiser,
supporting the arguments for data source selection within the original dataset. This
combined optimiser does not dominate over the optimiser trained on source 5. Yet, it
only improves upon the set benchmark (unlike its counterpart), which further supports
the inclusion of data from source 1 when using source 5.
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4.3 Optimiser robustness

In an attempt to saturate the resource utilisation, a new dataset was created for the Port
of Halifax and Port of Hong Kong. This dataset was synthetically imputed to contain
twice as many voyages as the original dataset. This was accomplished by creating a
duplicate, ‘twin’ voyage for each voyage seen in the original dataset. The identifying
information for the vessel and the voyage (namely the voyage ID and the vessel MMSI
and IMO) for these twin voyages were randomly reassigned to unique values not seen
in the original dataset, so as to double the vessel traffic as realistically as possible.
Additionally, in order to resolve any conflicts due to multiple vessels sharing the same
geo-spatial and temporal coordinates, the timestamps on the imputed contacts were
offset by 30 minutes. An example of these changes is shown in Table 14. Note that
prefixing ‘100’ maintains the uniqueness over all MMSIs, IMOs, and voyage IDs, all
of which were guaranteed to be unique in the original dataset.

Table 14 Creating a new AIS contact

Field Original contact Synthetic contact

MMSI 112358 100112358
IMO 99342 10099342
Voyage ID 92356ea3-d442-4e01-af8e-ddfae4bf68dc 100-92356ea3-d442-4e01-af8e-ddfae4bf68dc
Timestamp 14 May 2019 17:25:00 14 May 2019 17:55:00

Since each draught value in the original dataset is now present twice in the imputed
datset, the container load through the port is effectively doubled. The same optimisation
was run on this ‘doubled’ dataset and the resultant fuzzy membership functions are
shown in this section.

Table 15 Performance of evolved fuzzy systems on doubled load at Port of Halifax

Mined, real-world Optimised performance Performance on
performance on real-world doubled service load

service load

Number of crews used 33 3 3
Total service time 12 days, 11 hours, 9 hours, 17 minutes, 9 hours, 17 minutes,

50 minutes, 41 seconds 54 seconds 54 seconds

The results show that the evolved fuzzy system is able to easily handle double the
service throughput without any significant additional resource requirements, making
this a very robust optimised solution. There is a noted insignificant increase in the
resource deployment at Port of Hong Kong. However, since both the real-world load
and the synthetically doubled load, both require 24 cranes, this difference is considered
negligible. The limits of such an optimised resource deployment model are difficult
to identify, without additional data and are therefore left as future directions of
investigation.
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Table 16 Mean characteristics of evolved fuzzy systems for Port of Halifax

Delay µlow µmedium µhigh

A 0 0 0.443 ± 0.009
B 0 0.349 ± 0.008 0.738 ± 0.007
C 0.358 ± 0.008 0.580 ± 0.008 1.0
D 0.690 ± 0.007 0.803 ± 0.006 1.0

∆ delay µlow µmedium µhigh

A –1.0 –1.0 –0.269 ± 0.015
B –1.0 –0.316 ± 0.016 0.387 ± 0.016
C –0.309 ± 0.017 0.063 ± 0.015 1.0
D 0.444 ± 0.016 0.492 ± 0.013 1.0

Figure 8 Mean fuzzy membership functions for Port of Halifax with doubled traffic
(see online version for colours)

Figure 9 Mean fuzzy membership functions for Port of Hong Kong with doubled traffic
(see online versionfor colours)

Table 17 Performance of evolved fuzzy systems on doubled load for Port of Hong Kong

Mined, real-world Optimised performance Performance on
performance doubled service load

Number of crews used 88 23.097 ± 0.03 23.173 ± 0.04
Total service time 73 days, 10 hours, 1 day, 15 hours, 1 day, 15 hours,

57 hours, 7 seconds 18 minutes, 48 seconds 18 minutes, 48 seconds
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Table 18 Mean characteristics of evolved fuzzy systems for Port of Hong Kong with doubled
traffic

Delay µlow µmedium µhigh

A 0 0 0.369 ± 0.008
B 0 0.276 ± 0.007 0.650 ± 0.008
C 0.284 ± 0.008 0.487 ± 0.008 1
D 0.654 ± 0.008 0.748 ± 0.007 1

∆ delay µlow µmedium µhigh

A –1.0 –1.0 –0.315 ± 0.019
B –1.0 –0.362 ± 0.015 0.345 ± 0.017
C –0.403 ± 0.015 0.143 ± 0.016 1.0
D 0.302 ± 0.017 0.568 ± 0.014 1.0

5 Conclusions and future work

It has been shown that a MOGA can optimise a fuzzy system to control the adaptive
deployment of port-side resources. It has also been shown that separating multiple data
sources and selectively using the data from a subset thereof yields superior optimisation
results. Some optimisation results call to question whether sample bias may have
occurred, which can be dispelled with more data than was available for this study.
Further, pruning some data sources has been shown to improve the performance of the
resulting optimiser, which can be added to the data ingestion pipeline. Additionally,
other measures for the a priori evaluation of a dataset could help better predict the
quality of the dataset. Such measures have been proposed in Falcon et al. (2014) and
could be further evaluated in the context of this work.

The resource deployment model is also able to handle twice the container load seen
in the real world without altering the resource deployment, making it a very robust
model with higher capacity than originally designed for. With more data, the model can
be pushed further to determine its true capacity.

In an expansion of previous work (Panchapakesan et al., 2019), this resource
optimisation model has been shown to generalise to multiple commercial maritime ports
across multiple time periods, and against twice the known service load. This is in
contrast to other models that require a priori knowledge of incoming vessel schedules
in order to optimise resource deployment. This model is therefore online and is able
to maintain optimal performance when faced with vessel delays, etc. unlike previously
proposed models.

Further study is warranted into the optimisation of the fuzzy rule base and the
specification of the defuzzifier. As well, collecting more data from various sources can
help better inform the usefulness of the data from each source.
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Notes

1 Each GPC node runs Intel’s Xeon E5540 8-core CPU at 2.53 GHz, with 16 GB RAM;
each P7 node runs an IBM Power 755 server with four 8-core 3.3 GHz Power7 CPUs and
128 GB RAM. Detailed specifications can be found at https://www.scinethpc.ca/.




