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To Skynet. May we build it and teach it not to kill us all.



Abstract

Software testing is an important and time consuming part of the software develop-

ment cycle. While automated testing frameworks do help in reducing the amount of

programmer time that testing requires, the onus is still upon the programmer to pro-

vide such a framework with the inputs upon which the software must be tested. This

requires static analysis of the source code, which is more e�ective when performed

as a peer review exercise and is highly dependent on the skills of the programmers

performing the analysis. It also demands the allocation of precious time for those

very highly skilled programmers. An algorithm that automatically generates inputs

to satisfy test coverage criteria for the software being tested would therefore be quite

valuable, as it would imply that the programmer no longer needs to analyze code to

generate the relevant test cases. This thesis explores a hybrid evolutionary strategy

with an evolutionary algorithm to discover such test cases , in an improvement over

previous methods which overly focus their search without maintaining the diversity

required to cover the entire search space e�ciently.
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1. Introduction

1.1. Motivation

Any software, as part of the development process, needs to be tested before it is

deployed. This is becoming more and more relevant in today’s world, given how

many critical systems are controlled by software. A bug in mission critical software

could have severe and dire consequences, including the loss of equipment and possibly

human life (as in the case of medical software, flight control software, mission critical

rocket propulsion systems [2], etc) . As a result, it is imperative that software be

thoroughly tested before it is deployed.

The testing process consumes approximately 50% of the software development time-

line [3]. Considering how expensive it is to develop software, it is clear that reducing

the amount of time spent on testing the SUT (Software Under Test) would lead

to an optimization of the time spent in the development process and therefore an

optimization in the cost of producing software. This reduction in time may possibly

come from any of the following avenues:

1. Producing software that is less complex

2. Producing software that is initially bug free, thus eliminating the need for testing

3. Automating the process of testing

7



1.2 Software Complexity

1.2. Software Complexity

It is clear that software has been increasing in complexity with time. This is easily

observable from the evolution of computer programs from punch cards to modern

software with applications in auto-pilot systems, security (both electronically and

physically, as in building security systems) and even health care systems.

Further, with advances in computational intelligence and in methodologies employed

in producing hardware and the capabilities of hardware itself, it is clear that the

complexity of modern software will only increase over time. Therefore, it is irrational

to expect reductions in the required time to test software from a decrease in the

complexity of modern software.

1.3. Eliminating the Need for Testing

Since software is architected and developed by human beings, it is almost impossible

to expect a programmer to code a full specification correctly on the first attempt,

without any debugging. This problem is only exasperated when one considers that

most modern software is written by teams of programmers, communicating amongst

themselves. Owing to errors in communication, it is even less rational to expect

software collaboratively authored by such teams to be bug-free in the first release

without proper testing. Even with theoretic proofs of code, there is no guarantee that

there are no bugs in the software. Indeed, there is no guarantee that the developed

software even accurately implements the specification that it was supposed to. This

is one of the motivations behind black-box testing, or specification based testing

(discussed further in sec. 2.4) [4]. Thus, it is unlikely that any optimization in SUT

testing time can be achieved from eliminating the need for testing.

8



1.4 Automating the Process of Testing

1.4. Automating the Process of Testing

From the discussion in sec. 1.2 and sec. 1.3, it is clear that the only remaining method

of optimizing the time spent on the testing process is to automate the software testing

process itself. Testing the SUT requires that the agent performing the tests (whether

that agent is human or a computer program) provides the software with some inputs

and compares them against the expected behavior. If the SUT behaves as expected,

it passes the test, else it fails the test. While the running of the tests themselves can

be executed by automated testing frameworks[5], it is the generation of input data,

that is included in the test cases, that seems to require human input and resources.

It is the generation of such test case data that is of most interest in this thesis.

1.5. Thesis Contribution

This thesis uses evolutionary algorithms to generate inputs with which to test soft-

ware. Further, it explores problems faced by genetic algorithms arising from unfavor-

able initial conditions and attempts to mitigate the e�ects of these problems with a

hybrid evolutionary algorithm (composed of an Evolutionary Strategy and a Genetic

Algorithm) to find better initialization conditions for the Genetic Algorithm. Thus,

the Genetic Algorithm is able to better generate inputs with which to test the soft-

ware at hand. It is important to note that the work presented in this thesis is only

applicable to software that compiles cleanly and does not contain syntax errors; only

the semantics of the software are tested to determine if the implementation of the

software is faithful to the specification of which it claims to be an implementation.

Thus, the contributions of this thesis can be summarized as:

1. Generate inputs with which to test the given software

• Perform this generation of inputs faster than the current state of the art

• Search the space of test-input more thoroughly than the current state of

the art

9



1.6 Thesis Organization

2. Find more appropriate initialization conditions for the Genetic Algorithms used

to solve the above objective

• Provide a mechanism for the Genetic Algorithm to learn better initializa-

tion conditions over time, so that it may discover the inputs with which to

test the software, faster than the current state of the art

1.6. Thesis Organization

The remainder of this thesis is organized as follows. chapter 2 introduces the dif-

ferent types of software testing and highlights the paradigm that will be studied in

this thesis. Further, it contains a brief introduction to the two classes of evolution-

ary algorithms used in this thesis. Next, chapter 3 contains a survey of the use of

genetic algorithms in software testing, classifying them into the two main paradigms

against which the hybrid algorithm presented in this thesis will be compared. Finally,

chapter 4 discusses the implementation of the hybrid algorithm in detail, including

all parametric settings and software packages used. The analysis on the e�ects of

these parameters is shown in chapter 5 and chapter 6 discusses the limitations and

future directions of this thesis.

10



2. Software Testing Methodology

Overview

2.1. Overview

Software testing can be broadly categorized into static and dynamic testing, explained

in the following subsections.

2.2. Static Software Testing

Under the static testing paradigm, a code reviewer (e.g. a human) performs code

reviews and walkthroughs of the SUT with hypothetical inputs, visually following

the logical program flow. This is highly dependent on the skill of the reviewer and

requires a lot of the reviewer’s time [6, 7].

Further improvements in static testing allowed code to be symbolically analyzed,

collecting predicates for the various paths of execution of the code. From these

predicates, it is determined which paths may be infeasible or erroneous [8]. Others

have used such an approach and combined these predicates with a constraint solver

to determine which paths may be infeasible in a SUT [9].

11



2.3 Dynamic Software Testing

2.3. Dynamic Software Testing

On the other hand, under the dynamic testing paradigm, the code for the SUT is

actually run with the given test inputs. The behavior of the SUT is observed and

compared against its expected behavior and the test passes or fails depending on

whether the observed behavior matches the expected behavior.

As outlined in [10], Dynamic testing can be split into two categories:

Black Box Testing also known as functional testing; tests the SUT to ensure that it

is faithful to the specifications from which it was authored;

White Box Testing also known as structural testing; tests the SUT to attain some

level of code coverage and to test it on boundary conditions, etc (to be discussed

further in sec. 2.5).

2.4. Black Box Testing

The purpose of black box testing is to ensure that the classes and functions in the

SUT are indeed correct implementations of the specification, based on which they

were developed [10]. As such, test cases for Black Box Testing are generally com-

posed of input/output pairs; a SUT passes a test case if it produces the expected

output, when run on the given input. Thus, this testing paradigm provides a test-

ing methodology to ensure that the implemented functions and classes are indeed a

correct implementation of the specification of the SUT (i.e. functional testing).

Note that in this paradigm, the source code is not necessarily available to the tester,

as a result of which, it can not be tested for the presence of code bloat, inexecutable

code, etc.
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2.5 White Box Testing

2.5. White Box Testing

White box testing, also known as structural testing, aims to test code coverage and

edge cases. It is generally accepted for this purpose that “code coverage” means

“covering su�ciently many paths of execution”. Using path coverage as a heuristic,

it is possible to determine the existence of paths in source-code that may not be

executable. Further, once su�cient path coverage has been achieved, the SUT is

declared to be adequately tested and any test cases not covered by the automated

testing process are done so by a human agent.

This is still an improvement, as the test cases automated by the test case generator

would have otherwise been generated by a human agent as well.

2.5.1. Overview

White box testing is a software testing paradigm that uses the source code of the SUT

to test it. It is used to ensure that all parts of the code’s structure are executable -

to ensure code coverage1. As such, there are several forms of white-box testing2. In

each form, the SUT is converted into a control flow graph (CFG) - a mathematical

representation of the logical program flow of the SUT. In a CFG, each statement

is a node and sequential statements are connected by edges. Branching statements

(if-then-else statements, for-loops and while-loops) are characterized by mul-

tiple outgoing edges from a node, with conditions on each edge.

2.6. Path Coverage

Path coverage is one of the stronger testing criteria3, and is widely accepted as a

natural criterion of program testing completeness [8]. It requires that every path in

the CFG be executed at least once by the test suite. This is true despite the fact
1seee sec. 2.6 for mo
2see B for more
3See for background information on the di�erent forms of coverage in white-box testing
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2.7 Summary

that the presented test suite satisfies this criterion . As a result, this thesis focuses

on generating input vectors that satisfy path coverage. It is left to the tester of the

software to determine what percentage of all paths in the CFG need to be induced

by the inputs generated by the work presented in this thesis.

2.7. Summary

It is clear that Path Coverage is the strongest criterion with which to perform software

testing. It requires the generation of a CFG from the source code of the SUT, and a

threshold (set by the tester) for the minimum percentage of paths to be covered by

the test suite. This thesis focusses on generating input vectors that satisfy the path

coverage criterion to test SUTs.
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3. Related Work

3.1. Overview

Jones et. al. [1] use a GA to structurally test software. They use single-chromosome

individuals that encode test values for all input variables. For example, a population

of S individuals represents S test cases for the SUT; each individual encodes a test

value for each of the input variables in a segment of the chromosome. Thus, for a

program with N input variables, there are q
N

i=0 n
i

bits in a chromosome encoding

test values for it, where n
i

is the number of bits required to encode a test value for

the ith input variable. An example representation of the input vector <3,1> is shown

in Figure Fig. 3.1.

Such a GA is analogous to one that uses S individuals with N chromosomes each 1.

Input Variable 1 Input Variable 2

1 0 1 0 1

Figure 3.1.: An Example of the Chromosome Representation Used in [1]

Jones et. al. use the reciprocal of the minimum absolute di�erence between the

generated and required values for variables in path predicates as the fitness function

of an individual. For example, if a path predicate requires that variables A and B are

equal (i.e. A == B), then the fitness function would calculate 1
|A≠B|

2, using appropriate

guards to ensure that division-by-zero cases are appropriately handled. If this GA
1of course, in such a GA, crossover and mutation operators will need to be modified slightly to

accommodate the di�erence in representation. These are explained further, when analyzing the
presented reproduction operations

2Similarly, if a path predicate requires A>B, then the fitness function would calculate 1
|A≠B|+1
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3.1 Overview

were modeled with multi-chromosome individuals, then two chromosomes would be

required - one each for the variables A and B. Such semantic analysis is beyond the

scope of the work presented in this thesis, as a result of which the fitness function

used therein does not perform such semantic analysis3.

In addition, Jones et. al. define a uniform crossover function (as described in

sec. C.1.9.1). This is analogous to performing two uniform crossovers with each of

the two corresponding pairs of chromosomes in a GA using two-chromosome indi-

viduals. However, such a crossover function may move the GA to a completely new

point in the solution space, and not create an individual that resides part way be-

tween the parents as is typically expected of GAs. Still, this has the advantage of

escaping local optima with higher probability, especially towards the end of evolution

(where one-point crossovers are unable to make a meaningful contribution due to

the low probability of a one-point crossover producing an o�spring that can escape a

particular local optimum).

It is interesting to note that Jones et. al. use a mutation function that flips each bit

in a chromosome with probability 1qN

i=0 ni
. This implies that it is likely that exactly

one bit per chromosome will be flipped as a result of this mutation operator. This

can be viewed as the alteration of one random bit in the encoding of the value of one

of the input variables. While it is reasonable to use this mutation operation, using

a mutation operation that flips a random bit in the encoding of each variable should

also be explored. Such a mutation operation would allow the GA to escape local

optima more quickly by generating mutants that are not constrained to any values

along any axes in the search space (as would be the case if only one bit was mutated).

Jones et. al. were able to overcome this limitation by mutating the most and least

significant bits with higher probability than the rest of the bits in the chromosome.

Also, the GA that they used extremely favored diversity, so that each individual in

each generation of the population was unique. This is to say that in any generation

of the population, there were no two individuals that encoded the same test inputs.

3The actual fitness function used is defined in sec. 4.5.3
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3.1 Overview

While this is one way to force the GA to discover inputs that satisfied more paths in

the CFG, it is also likely to generate illegal inputs. Indeed, this is one of the problems

that Jones et. al. acknowledge and explicitly do not solve. As a result of ignoring

this problem, it is likely that a larger than desirable fraction of the population would

traverse the same path on the CFG. Since this is undesirable, a GA that is used to

generate test input data should address this problem by not generating too many

individuals that traverse the same path on the CFG.

Further, biasing the GA to this degree, towards diversity has the additional conse-

quence of slowing down the runtime, as each individual (either generated randomly

for the initial population or as a result of reproduction operations) must be checked

for pre-existing doppelgangers (i.e. individuals in the population that are identical to

and were generation prior to the currently generated individual) in the population.

On the other hand, Pei et. al. note that generating inputs to cover all possible paths

in the CFG of a SUT is sometimes intractable and as a result, paths need to be

selected for adequate coverage [8]. This can be achieved in one of two ways:

1. a human agent provides a list of paths that need to be covered for adequate test

coverage; or

2. paths are classified into several bins and a human-selected path from each bin

needs to be covered in order to satisfy coverage

(item 1) is counter intuitive to the purpose of automation. Since there are automated

methods of generating CFGs [11] and computing the similarity between pairs of paths

within a CFG [12], it seems that selecting appropriate paths for adequate test coverage

should be automated, as part of automating the testing of the SUT. However, since

this technology was not available at the time, Pei et. al. employ user-provided paths

to test the individuals of their GA.

Similarly, (item 2) is also counter intuitive to the idea of automation, since it is

possible to task a GA with generating inputs to cover all paths in a group [6, 12].

Pei et. al. use the same encoding scheme as in [1], but use a single point crossover
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3.1 Overview

function with the same mutation function. This combats the issue of generating

an individual that resides in a completely new point in the solution space (high

discovery). However, it fails to allow for discovery towards the end of evolution as

described in [6].

Pei et. al. use a biased roulette wheel as a selection mechanism (as explained in

sec. C.1.7) but use an interesting fitness function. Their fitness function computes

the degree of match between the executed path and the target path, but computing

the sum of distances in branch predicates described in Table Tab. 3.14.

Table 3.1.: Degree of Match Between Two Paths Based on Path Predicates

Branch Predicate5 Branch Function When
E1 > E2 E1 ≠ E2 E1 ≠ E2 > 0
E1 Ø E2 0 E1 ≠ E2 Æ 0
E1 < E2 E2 ≠ E1 E2 ≠ E1 > 0
E1 Æ E2 0 E2 ≠ E1 Æ 0
E1 = E2 |E1 ≠ E2| |E1 ≠ E2| > 0
E1 ”= E2 0 |E1 ≠ E2| Æ 0

[8]

The disadvantage of using this fitness function is that it must be computed for all re-

quired paths for each individual. This makes the fitness computation for a generation

of the population very expensive: (O(P ◊ N) time complexity, where P is the size of

the population and N is the number of target paths). This is one possible reason as

to why their experiments were performed with smaller population sizes.

Ahmed et. al [6] devise a system that first attaches tags to the beginning and end of

various functions and classes in a SUT so that the path induced by test inputs can

be tracked. They use a complex fitness function that incorporates both unmatched

branches (as in [8]) and unmatched nodes between candidate solutions and the tar-

get paths. However, this fitness function calculates the fitness of each individual

against every target path. This has the same performance bottle-neck, previously

described while discussing [8]. While they o�er very little explanation as to the setup

4Note that in this case, the optimizing the fitness function entails minimizing the fitness value of
an individual

18



3.1 Overview

of their GA, they do mention that computing normalized deviation6 and violation7

scores functions as a more e�ective fitness function. The fitness function they use is

computed as a function of the intermediate fitness function shown in equation (3.1).

IF
ij

= D
ij

+ V
ij

(3.1)

where

D
ij

=
nÿ

k=1
D

ij,k

V
ij

=
nÿ

k=1
V

ij,k

i the index of the target path

j the index of the individual

k the index of the node in the target path and the index of the node in the path

induced by the jth individual

Here, D
ij

is the sum of the distances between the values of variables that are composed

from unmatched predicate nodes in the induced and target paths. For example, given

the induced and target paths shown in Tab. 3.2, for the code shown in Algorithm 3.1

on the individual in the GA representing the inputs <A=3,B=4>:

D = 1, since the required inputs for the target path require that A Ø B and the

minimum value of A that satisfies this condition for the given value of B is 4 and the
6a measure of how many target node-branches were not traversed by the path induced by the test

input
7a measure of how many target nodes were not traversed by the path induced by the test input
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3.1 Overview

di�erence between 4 and the given value is |4 ≠ A| = 1. Similarly, V = 1 since there

is exactly one unmatched node between the induced and target paths. Thus, the IF

for this (target path, induced path) pair is 2.

Algorithm 3.1 Algorithm to Demonstrate Deviation and Violation
1: function foo(A,B)
2: print "starting function"
3: if A < B then

4: print "A is smaller"
5: else

6: print "A is at least as large as B"
7: end if

8: print "ending function"
9: end function

s

2

t

3

A<B

4

A>=B

Figure 3.2.: CFG for Algorithm 3.1

Part of their methodology is to attempt to create individuals to induce all target

paths. In order to do this, the GA is initialized with all target paths involved in the

fitness function. As each target path comes to be induced by some individual in the

GA’s population, the path, as well as the individual that induced that path, are noted

and evolution proceeds without the involvement of that particular path in the fitness

function any further [6].
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3.1 Overview

Table 3.2.: Target and Induced Paths for Algorithm 3.1

Target Path (s,2,3,t)
Induced Path (s,2,4,t)

Doing so poses an optimization problem for the GA. The GA starts by attempting

to create individuals that induce all target paths, an impossibility in itself. However,

as target paths are induced, the population of a GA is in a state wherein the removal

of the induced path causes the fitness of the individuals in the population to plunge.

This is to say that the existence of the path that was just induced as a member of

the fitness function caused a thrust in the fitness values of the individuals in the

population. The result is that individuals who may have been considered as unfit

in the past (and therefore became extinct in the process of evolution), could have

been considered fit once the induced path is removed; these individuals will need

to be rediscovered by the GA - a redundant task, which is a significant source of

ine�ciency.

This problem is addressed minimally by Berndt et. al. in [10]. They maintain a fossil

record - a record of all individuals that have ever been generated by the GA. With

that information, the fitness function computes two values:

Novelty a measure of how unexplored the area in the search space where this indi-

vidual is

Proximity a measure of how likely it is that this individual would induce a path in

the CFG leading to the discovery of an error

Novelty is computed as k
n

◊ q Òq(c
ij

≠ f
ij

)2. In this expression, c
ij

denotes the jth

parameter of the ith individual in the current generation of the population, while f
ij

is the jth parameter of the ith fossil; and k
n

is a constant used to penalize or reward

such novelty.

Similarly, proximity is computed as k
p

◊ q Òq(c
ij

≠ e
ij

)2, where e
ij

is the jth pa-

rameter of the ith fossil record that induced a path in the CFG that caused an error;

and k
p

is a constant used to penalize or reward such proximity.
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3.1 Overview

In order to force the discovery of new inputs, k
n

is kept high and k
p

is kept low.

It is important to note at this point, that because of the definition of the fitness func-

tion, the computation of the fitness function becomes progressively more expensive

over time. This is because the fitness function has a time complexity of O(F ◊ E),

where F is the size of the fossil record and E is the size of the subset of the fossil

record containing individuals that induced a path in the CFG that caused an error.

Since the fossil record stores each generation cumulatively, F = P ◊G where P is the

population size and G is the number of generations that have passed so far. Thus it

is not di�cult to see that the runtime complexity of the fitness function could easily

surpass O(P 4), which is catastrophically expensive. Further, downplaying the prox-

imity measure may not be a good idea, as there may be a neighborhood of test inputs

in the search space that cause errors, and downplaying proximity would not allow for

thorough exploration of such neighborhoods. However, since Brendt et. al. found

a good balance between k
p

and k
n

, they are able to force the exploration of exactly

such neighborhoods. Still, such searching is very expensive and possibly dependent

on the SUT.

Further, there is no method proposed to detect whether inputs in a neighborhood

repeatedly induce the same path. This means that although multiple error-causing

inputs may be found, it is possible that all inputs may induce the same path in the

CFG. This results in a run of evolution that appears to be more successful than it

really is. Though this method has been successfully used in [10] to generate inputs

that induce multiple paths in the triangle classification problem, it is still unclear

that it may reliably find such paths in other SUTs.

This problem can be somewhat mitigated by reducing the number of paths that need

to be induced by all test inputs in a run of the GA. Such a reduction in the set

of paths can be accomplished by grouping similar paths together and executing one

run of the GA per group of paths, as outlined in [12]. However, in performing such

grouping, the following conditions need to be met:

1. Only those paths that have adequate subpaths in common with each other
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3.1 Overview

should be grouped. If this is not the case, the grouping ceases to be meaningful

as it is reduced to a smaller scale version of the work presented in [10].

2. The groups need to be disjoint. If this is not the case, then the fitness function

across some runs of the GA will be redundant, and thus ine�cient.

3. In order for the grouping to a�ord a runtime optimization from a reduction in

the size of the search space, the runs of the GA on each individual group must

be capable of being executed independently of all other runs on other groups.

4. The group sizes should be as even as possible. Suppose this is not the case, and

as a result, one of the groups contains more target paths than the others. Then

a run of the GA with a fitness function using this group would take longer to

finish than a run of the GA with a fitness function using a di�erent group (with

fewer target paths). As a result, even if all GAs were run in parallel, the extra

time required to run a GA with this larger group of target paths will slow down

the time required to complete the run of the overall set of GAs. However, this

will not be the case if all groups contained an equal number of target paths; in

which case, if the overall set of GAs were run in parallel, they would all finish in

approximately equal amounts of time. With this in mind, Dong et. al. divide

P target paths into M groups such that each group contains approximately P

M

paths, and the di�erence in size between any two groups is at most 1.

Dong et. al. suggest that the measure expressed in equation (3.2) should be used to

compute similarity between two target paths; and that the paths can be grouped to-

gether if the similarity is higher than a threshold that they determined experimentally

[12].

s(p
i

, p
j

) = |p
i

fl p
j

|
max(|p

i

|, |p
j

|) (3.2)

where p
i

, p
j

are target paths
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3.1 Overview

and |p
i

| is the number of nodes in path p
i

and |p
i

fl p
j

| are the number of consecutive identical nodes in paths p
i

and p
j

.

Note that s(p, p) = 1 for all paths p.

It seems logical that the formation of these groups should be dictated by the similarity

index computed by equation (3.2). However, Dong et. al. choose to partition target

paths among groups by selecting the P

M

most similar remaining target paths. While

this method of partitioning target paths into groups would work for the first few

groups, it is trivial to see that in the worst case, the last group will be composed of

paths that are very dissimilar to each other. As a result, a run of the GA on such a

last group would indeed be a scaled down version of a run of the GA described in [6]

and would su�er from the same evolutionary bottleneck discussed above.

Still, each run of the GA within a group still functions as does the GA presented in

[6]. The only advantage is that the search space is much narrower and the search

is therefore restricted to a smaller neighborhood of the original search space. Fur-

thermore, since the GA starts with a random population initialization as it normally

would, this information about the narrowed search space is lost. Though it is true

that this information would be discovered quite quickly, it is still a learning that is

not strictly necessary for the GA to undergo. A GA might indeed perform better

if the initial population covered the narrow neighborhood of the search space more

thoroughly, than the the entire search space evenly.

Given today’s advances in computational power, focusing more on forming prudent

groups rather equal sized groups might lead to a better evolutionary run-time. For

instance, if in the worst case, a group contains several very dissimilar paths, then it

becomes analogous to running the GA described in [6] for a smaller number of paths.

Hence, a run of the GA on that group might itself be a bottleneck, almost as severe

as executing one run of the GA for all target paths. Thus, it would likely be wiser

to create groups of variable size which contain paths that share a similarity higher

than an experimentally determined threshold. Intuitively, this provides more of a
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3.1 Overview

guarantee that all machines executing a run of the GA on some input would complete

execution in minimal maximum running time.

This is exactly the notion explored by Gong et. al. in a follow up paper [13] in which

target paths are grouped together only if they have a high similarity8 between them.

Once such groups are formed (note that the number of groups has an upper bound of

the number of paths), a run of the GA is executed for each group. While in this case,

the groups are formed well (to contain only paths that are very similar), the problem

still remains that the initial population is created without using the knowledge that

all the target paths in a group are in a narrow neighborhood of the search space.

The GA is forced to learn this with the imposed penalty in the fitness function that

penalizes individuals for not inducing the required target paths. Still, there are two

problems with this approach:

1. The GA is required to learn that all the target paths (and therefore the fittest

individuals to be evolved) are located in a relatively small neighborhood in the

search space.

2. The fitness function still compares all individuals in a population to all target

paths in a group.

The e�ects of (item 1) are somewhat mitigated by the introduction of the penalty;

but that is still an ad-hoc reactionary solution and does not preempt the problem.

Rather, it foresees the problem, and does nothing to prevent it from happening. A

GA with an initial population that explored this neighborhood more thoroughly is

more likely to produce results in a more e�cient manner

On the other hand, (item 2) is an improvement on past technology. Still, it can be

improved further. Clearly, the most accurate and directed evolution can be designed

for exactly one path. Yet, it does not make sense to make several singleton groups

(for that would negate the purpose of grouping target paths). An improvement over

this will be suggested and discussed in the methodology.

8Similarity is computed as s(p
i

, p
j

) = k≠1
max(|pi|,|pj |) , where p

i

and p
j

share the first k nodes
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3.2 One For All (OFA)

The literature holds examples of other representations of the problem space as well.

For example, Zhang et. al. use a Petri Net representation to generate inputs with

which to test multimedia applications [14]. They use petri nets as an alternative

representation of the SUT (as compared with the CFG representation used in this

thesis). Further, they rely on constraint solvers to facilitate input generation and

only test for reachability. This is loosely related to the notion of detecting infeasible

paths (and thus identifying code bloat) in static white box testing9. While Petri Nets

are a helpful representation tool, they are inappropriate for use in this thesis as they

cause an additional layer of abstraction and transformation between the source code

of the SUT and the input generation mechanism.

Finally, Labiche et. al. use GAs to test real-time systems but are more focussed on

reducing the amount of compute time required by these systems at run-time, so as

not to delay the returning of results, even when under heavy load [15]; or to determine

the order in which software should be tested in order to minimize the amount of time

required for testing bootstrap activities such as method stubbing [16]. These focus

less on generating the inputs with which to test software itself, and are therefore

considered out of the scope of this thesis.

It is clear from the reviewed publications that the current methodologies can be

broadly classified into the following two approaches.

3.2. One For All (OFA)

Under this paradigm, one run of a GA is used to generate test inputs that induce

all target paths. The fitness measure used to compute the fitness of an individual,

under this paradigm, measures a defined distance between the path induced by the

individual (or the inputs that it represents) and each of the target paths. These

distances then become the inputs to the fitness function which applies some form of

normalization to these values.
9see sec. 2.5 for more
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3.2 One For All (OFA)

Suppose that most of the target paths fall into one small cluster of the search space

and that there are a few target paths that occupy some other neighborhoods of the

search space that are remote from this cluster. By sheer density of this cluster, the

fitness function will favor individuals that induce paths similar to the target paths

in the cluster, more than it will favor those in the remote neighborhoods. As a

result, individuals that encode inputs that induce paths similar to target paths in

those neighborhoods become extinct. Thus, they must be rediscovered by the GA

after individuals encoding the inputs for all the target paths in the primary cluster

have been discovered. The disadvantage of using this paradigm therefore, is that any

GA under this paradigm has to undergo some ine�cient un-learning and relearning

phases, as seen in Fig. 3.3. This disadvantage is improved upon in the paradigm

discussed in sec. 3.3.

(a) Initial Conditions After Population Initialization (b) Population Converged on a Single Target Path

(c) Converged Population and Dissimilar Target
Path

(d) Unlearning Leads to Chromosomes Similar to
Initial Conditions

Figure 3.3.: Progression of a GA Demonstrating Ine�cient Convergence in the OFA
Paradigm
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3.3 One For Each (OFE)

3.3. One For Each (OFE)

Under this paradigm, one run of a GA is tasked with discovering an individual that

encodes the inputs for a specific target path. However, if there exists a cluster of

very similar target paths, then each run of a GA, tasked with discovering one of those

target paths, will have to independently converge on that cluster in the search space.

This implies multiple instances of independent and redundant learning on the part

of several GAs. This redundant learning is ine�cient and is improved upon by the

paradigm discussed in sec. 3.2.

3.4. Summary

Both the OFA and the OFE methods combat each other’s shortcomings without

addressing their own. Clearly, a hybrid solution encompassing both their strengths

would be beneficial. Such a hybrid would also mitigate the problems that GAs face,

given the uncertain nature of the randomness of their initialization conditions.
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4. Implementation

4.1. Overview

As discussed in chapter 3, there are several problems concerning the use of one run

of a GA per collection of target paths in order to discover test input data for a SUT.

At the same time, executing one run of the GA per target path seems ine�cient.

Therefore, a balance needs to be struck with a hybrid system. This thesis proposes

to develop such a more appropriate hybrid method to use GAs and ESs to discover

test input data for a SUT.

Consider the merge sort algorithm. It functions by recursively splitting a list of

numbers in half, sorting each half and merging corresponding halves together [17].

The first version of the algorithm, indeed the one still taught in introductory computer

science courses today, uses a linear insertion technique to merge corresponding halves

of lists; i.e. to merge two lists containing n elements each, a total of n comparisons

are made. Of importance is the notion that the input list is first recursively divided

into sublists until at least one and at most two singleton lists remain.

With a little analysis, it is not di�cult to see that merging techniques other than

linear insertion may be used to merge two sorted halves of lists, as explored in [17].

Further, note that this is only one implementation to recursively use merge sort on

each half of the divided list. Indeed it is a logical choice in the interest of runtime

e�ciency, though it is also possible to use any other sorting technique to sort the

sublists and any merging technique to merge sorted sublists.
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4.1 Overview

With that in mind, this thesis explores a hybrid evolutionary strategy and genetic

algorithm to discover test input data for a SUT. Many works in the literature have

been reviewed that use a GA to either discover one target path 1, several target paths

iteratively2, or several target paths iteratively within a grouped set of similar target

paths (without giving the GA any knowledge about such a similarity)3.

In the spirit of the work presented in [13], this thesis will generate groupings (i.e.

bins) of similar target paths. However, a run of the GA for each group will not start

with a normal random population generation function. Rather, the initial population

will be primed in some sense to reflect the context of the grouping of similar target

paths. Thus, the algorithm begins with an ES with a random initial population,

recursively classifying target paths into bins of similar target paths. This is done

by computing a similarity index between every pair of target paths4 and assigning

multiple target paths to a specific bin only if their mutual similarity indices surpass

an experimentally determined threshold. At each level of the recursion, an individual

from the current population is computed to be the seed (explained in sec. 4.5) for

each bin and mutated several times to spawn the next generation of the population

of individuals for that particular bin. This continues until there is only one target

path left in a bin; at which point, the GA is used with the spawned population, to

find the test inputs that induce the only target path in the bin.

All algorithms presented in this thesis were implemented using the Python program-

ming language, with the trace and Pyvolution

5 packages, and their dependencies

with Python version 2.7.3.

1see chapter 3 for more
2see chapter 3 for more
3see chapter 3 for more
4see Algorithm 4.5
5See sec. 4.7
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4.2 Workflow

4.2. Workflow

As mentioned in sec. 4.4, the target paths are known a priori to the hybrid evolution-

ary algorithm. However, that is an ambiguous assumption as it allows for the necessity

that the target paths must be extracted before invoking the algorithm, most likely

by a human agent. Since involving a human agent at this stage would be against to

the notion of automation (especially since the set of target paths is likely to change,

following each iteration of code debug, refactor, etc), the paths are automatically ex-

tracted from the SUT’s source-code. The algorithms used to extract these paths are

demonstrated in Algorithm 4.1 to Algorithm 4.4. Note that Algorithm 4.1 requires a

list of execution scopes of the SUT, which is provided by the cfg package6.

As expected, once the target paths have been extracted, the hybrid algorithm is

invoked. While the workflow of the algorithm itself is presented in Fig. 4.2 and Fig. 4.3,

the entire workflow, starting with the extraction of target paths from the SUT is

illustrated in Fig. 4.1.

Algorithm 4.1 Finding the Parent Scope of a Scope in the SUT
1: function findParentScope(scope, scopes)
2: lowerBound Ω ≠Œ
3: upperBound Ω Œ
4: for key œ keys of scopes do

5: start Ω key0
6: end Ω key1
7: if lowerBound Æ start Æ scope0 & upperBound Ø end Ø scope1 then

8: lowerBound Ω start
9: upperBound Ω end

10: end if

11: end for

12: if lowerBound==≠Œ & upperBound==Œ then

13: lowerBound Ω 0
14: upperBound Ω max({key0 œ keys of scopes} t{key1 œ keys of scopes})
15: end if

16: end function

6See A
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4.3 Algorithm Overview

Algorithm 4.2 Computing the Nested Scopes of a List of all Scopes in the SUT
1: function getNestedScopes(scopes)
2: answer Ω new HashMap
3: for scope œ scopes do

4: if scope ”œ keys of scopes then

5: answerscope Ω answerscope
t {scope}

6: end if

7: parent Ω findParentScope(scope, scopes)
8: answerscope Ω answerscope

t scope
9: end for

10: return answer
11: end function

4.3. Algorithm Overview

1. We begin with the SUT by generating its CFG using an appropriate library7.

As a preprocessing step to the evolutionary algorithm to follow, we compute

the similarity between every pair of target paths extracted from the CFG, using

the similarity measure described in [13], repeated here for convenience:

s(p
i

, p
j

) = k≠1
max(|pi|,|pj |)

where 1 Æ k Æ max(|p
i

|, |p
j

|) is maximal

and for all a Æ i Æ k, the ith node in p
i

is exactly the ith node of p
j

(for some

1 Æ a Æ max(|p
i

|, |p
j

|)).

Further, we define a relative similarity s
R

(p
i

, p
j

) = s(pi,pj)q|P AT HS|
k=0 s(pi,pk)+s(pj ,pk)

.

This measure e�ectively views the two paths p
i

and p
j

as strings, whose charac-

ters are node numbers, and computes the ratio of the longest common substring

to the length of the longer path. This is computed using a Dynamic Program-

ming technique, as shown in Algorithm 4.7 using Algorithm 4.8, an implemen-

tation of what is discussed as the traditional method in [18] using the python

programming language.

2. A random population of test input data is generated with a chromosomal struc-

ture encoding the correct number of inputs within their legal domain values

(discussed in detail in sec. 4.5.1.2).
7SUTs in this thesis were written in the python programming language. The CFG was generated

using the cfg package in python

32



4.3 Algorithm Overview

3. The target paths are divided into bins based on target paths whose similarity is

greater than an experimentally determined threshold. This binning algorithm is

shown in Algorithm 4.5 which, in turn, uses Algorithm 4.6, Algorithm 4.7 and

Algorithm 4.8.

4. The chromosome in the population that has the highest fitness among each

group is then considered to be the seed for the next generation of test input

data for that group of target paths. The algorithm used to determine the seed

for each group is shown in Algorithm 4.9.

5. This chromosome is mutated several times in various ways to form the new

population for the group of similar target paths.

6. Repeat steps item 3 - item 5 until the resulting groups of similar target paths

are all singletons.

7. Execute a run of the GA algorithm per target path (i.e. per singleton group of

target paths) until a test input is discovered that induces the target path.

8. Record the discovered test input and the target path and terminate the evolu-

tionary process for that group.

This algorithm is visualized in Figure Fig. 4.2 on page 51 and Figure Fig. 4.3 on page

52.

Despite the drawbacks to executing separate runs of the evolutionary process per

group or target path, the following justifications can be made:

1. This method is highly parallelizable.

2. Due to the small size of each group, the evolutionary process to execute a run

of the GA would not take as long.

3. Since the initial population for the GA has already undergone several genera-

tions of evolution, the initial population is already composed of multiple very
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4.4 Binning, Seed Finding and Similarity Computation Algorithms

fit chromosomes8. This would only expedite the process of evolution.

4. Since the GAs themselves can be executed fairly quickly (as explained above),

the maximum delay of the last machine to finish such a run of the GA in a

parallel environment can be reduced.

4.4. Binning, Seed Finding and Similarity

Computation Algorithms

Since the target paths are known before starting the hybrid evolutionary algorithm,

the core algorithm classifies the target paths into bins, finds a seed per bin and spawns

a new population of individuals per bin, by mutating the seed. The algorithm then

recursively repeats this process until only one target path remains in any bin; at which

time, a GA is used on the bin(s) containing only one target path, while the recursion

continues on all other bins. This process is illustrated in Fig. 4.4 (in the interest of

brevity, the process flow of only one bin is expanded). The algorithms associated with

this process flow are described in this section.

4.5. Detailed Algorithm Design

4.5.1. An Individual

An individual represents a vector of inputs to be used to test the SUT, given the

domain of values each input may reside in.

4.5.1.1. Representation

The individuals used in this thesis were single-chromosome individuals, representing

the values of the input variables as binary bit-strings. Thus, each gene is a disjoint
8These chromosomes are at least much more fit than the chromosomes in the initial, randomly

generated population
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section of the chromosome that encodes the value for a particular input variable. For

example, Fig. C.1 (repeated in sec. 4.5.1.2 for convenience) illustrates the structure of

a chromosome encoding the three inputs that form the input vector <3,4,5>.

4.5.1.2. Creation

In this example, each gene is created by concatenating the results of four calls to a

random number generator to generate a number in the appropriate domain9. This

number is then converted into a binary bit-string representation using a function call

provided in the Python standard library. Once converted, this binary bit string is

padded with 0s on the left to ensure that it is represented by a full four bits. This

algorithm is visualized in Fig. 4.6.

Input 1 Input 2 Input 3

0 1 1 1 0 0 1 0 1

Figure 4.5.: Example Chromosome for Input Vector <3,4,5>

4.5.2. Population Initialization

4.5.2.1. Initialization for the Hybrid Algorithm

Given

1. the number of input variables (N)

2. the data types and the ranges of domain for the input variables

3. the number of individuals in the population (popSize)

the initial population is created by creating popSize many unique individuals. The

creation of each individual is visualized in Fig. 4.6, while the generation of the initial

population is visualized in Fig. 4.7.

9Part of Python’s standard library
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4.5.2.2. Initialization in the Seeded Evolutionary Strategy and the Seeded

Genetic Algorithm

After the target paths have been binned (by the binning algorithm described in

sec. 4.4), a seed individual is computed for each bin. This done by Algorithm 4.9

by computing the relative similarities between the path induced by each individual

and the bin or target paths. The individual that induces the path with the highest

relative similarity is considered to be the seed for that bin

4.5.3. Computing the Fitness of an Individual

The fitness of an individual is computed against a target path.

First, the chromosome of the individual is decoded into the test input values. The

SUT is then run on these variables, using a software harness10 and the path of ex-

ecution (the induced path) is tracedfootnote 10. Next, the similarity between the

induced path and the target path is computed (as discussed in sec. 4.3. This com-

puted similarity is the fitness of the individual. This process is visualized in Fig. 4.8.

4.5.4. Selecting Individuals for Mating

Individuals in the population are selected in a fitness-proportional manner by using

a roulette-wheel selection scheme as described in sec. C.1.7.

4.5.5. Crossover

A one-point crossover mechanism was used to perform crossover operations between

pairs of individuals. This was used over a uniform crossover scheme, as is it possible

that changing one input variable to a SUT may significantly alter the induced path.

A one-point crossover ensures that only one variable’s value is changed. On the other

hand, the likelihood of only one input parameter to the SUT changing as the result
10This is accomplished by using the tracer module in Python’s standard library
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of a a uniform crossover is very low. It is for similar reasons that n-point crossovers

were also not considered (for n > 1).

4.5.6. Mutation

A point mutation (as discussed in sec. C.1.10) was implemented. This mutation mech-

anism flips one random bit in the encoding of one of the input variables.

4.5.7. Spawning

A spawning function is used in the seeded GA and seeded ES algorithms to produce

a full population of individuals from a seed. The spawn function used was exactly

the mutation function. This allows the algorithm to generate a full population of

individuals that are very similar to the seed. This allows for the creation of a pop-

ulation that is highly localized to the neighborhood in the search space occupied by

the target paths in the bin. This process is visualized in Fig. 4.4.

4.5.8. Termination

The Seeded GA algorithm terminates either when an individual that encodes inputs

that induce the desired target path is found; or when the maximum number of allowed

fitness evaluations has been reached.

4.6. Implementation Parameters

The implemented algorithmic parameters for each SUT are listed in Tab. 4.1. The

e�ects of these values are discussed in chapter 5.
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4.7 The Pyvolution Software Package

Table 4.1.: Experimental Parameters

Parameter

Name

Description

Experimental

Range

Implemented

Value

initThreshold
the hybrid’s threshold to
classify paths into bins

based on similarity
{0.1, 0.2, 0.3} 0.1

midThreshold
the seededES’s threshold to

classify paths into bins
based on similarity

{0.6, 0.7, 0.8} 0.7

4.7. The Pyvolution Software Package

Note: this section is an extract from a published paper in the IEEE conference

Congress of Evolutionary Computation [19].

4.7.1. Previous Work

There are several frameworks geared toward the development of evolutionary algo-

rithms, written for the Python programming language. However, many of these

frameworks su�er from net being very extensible, i.e. it is not always easy to solve

a new class of problem with an evolutionary algorithm using these framework. Fur-

ther, all of these frameworks su�er from the problem that the framework provides no

easy methodology to debug an evolutionary algorithm developed using it. Design by

Contract is one way of supplementing python’s native error reporting to assist with

the debugging process.

4.7.2. An Example: A Genetic Algorithm to solve the Traveling

Salesman Problem

The Traveling Salesman Problem on the well known Berlin-52 map, which contains

52 cities is used to demonstrate parts of the developed software package.

A genetic algorithm (GA) begins by generating an initial population of random tours

for the traveling salesman. Once this initial population is created, it selects individuals
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4.7 The Pyvolution Software Package

to probabilistically crossover and mutate, thereby making child individuals, which

comprise the next generation of this population. Repeating this process of selection,

crossover and mutation over several generations allows the GA to converge on an

optimal solution.

An Individual Individuals in a GA to solve this problem are made up of one chro-

mosome. This chromosome is a list of 52 integers, each one representing a city on

the map. In order for an individual to represent a legal solution in the solution space,

the chromosome is a permutation of {0, 1, 2, ..., 51}, thus making it a valid tour for

the traveling salesman problem.

Fitness of an Individual Since the optimal solution for this problem is an individual

whose tour length is minimal, the fitness of each individual could be the length of the

tour it represents. However, since the goal is to maximize the fitness, a better fitness

measure of an individual would be the negative of the length of the tour it represents.

This can be easily computed under the following assumptions:

1. Each of the 52 cities on the map is represented as a point on the xy plane

2. There is a straight line (road) connecting every pair of the 52 cities on the map

Thus, the fitness of an individual can be computed as shown in eq. 4.1

fitness = ≠dist(city51, city0) ≠
50ÿ

c=0
dist(city

c

, city
c+1) (4.1)

where

dist(c
i

, c
j

) =
Ò

(city
i

.x ≠ city
j

.x)2 + (city
i

.y ≠ city
j

.y)2

Selecting Individuals In order to create new individuals out of existing individuals,

two are selected for crossover and mutation operations. The selection mechanism is
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fitness proportional, meaning that individuals with higher fitness are selected more

often than individuals with lower fitness.

Crossover A crossover is an operation that takes two parent individuals and creates

a new child individual, whose chromosomes are comprised of parts of the correspond-

ing chromosomes from both parents (as explained in sec. C.1.9). In the case of this

traveling salesman problem, one possible crossover function is defined as follows:

1. Select points A and B such that 0 < A < B < 51

2. Make an empty child chromosome which is intended to hold 52 cities (a new

tour for the traveling salesman)

3. Copy over all the cities between points A and B in the tour represented by

parent1 into the child chromosome

4. Copy over all the cities before point A and after point B in the tour represented

by parent2 into the corresponding location in the child chromosome, as long as

the city does not already exist between points A and B in the child chromosome.

5. Fill in the remaining cities in the child chromosome based on the order in which

they appear in parent1.

6. Insert this child chromosome into a new individual - the child individual of the

crossover.

Note that it is imperative that the child individual of a crossover represent a legal

solution so as to ensure that the GA does not create individuals that are outside the

solution space.

Mutation As explained in sec. C.1.10, a mutation is an operation that slightly

changes an individual. One possible mutation is to swap the positions of two cities

in the tour. Another possible mutation is to reverse the order of the cities in one

contiguous part of the tour.
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Note that it is imperative that a mutated individual must still represent a legal

solution so as to ensure that the GA does not create individuals that are outside the

solution space.

4.7.3. Introducing Design by Contract

The Design by Contract Principle Design by contract (DbC) is the principle that

interfaces between modules of a software system should be governed by precise speci-

fications. The contracts will cover mutual obligations (preconditions), benefits (post-

conditions), and consistency constraints (invariants) [20]. This principle is especially

applicable in large modular systems with multiple levels of abstraction, such as a

framework for implementing GAs.

The Advantage of Using DbC in this Framework Two of the core design principles

of the python programming language are

1. Almost all expressions that a programmer tries to compute must be computed

in some meaningful way.

2. All error reporting and tracebacks should be meaningful in order to help a

programmer better debug their program. In particular, core-dumps and crashes

should be avoided.

In most cases, these are very desirable principles in a programming language. How-

ever, when working with Genetic Algorithms (GAs), where even simple o�-by-one

errors can cause individual solutions in a population to leave the solution space and

where mutation and crossover operations are probabilistic, bugs become di�cult to

reproduce and traditional step-through debugging becomes infeasible (except in a

small subset of the program’s functional body). While this error reporting explains

why the GA may crash, it does very little to reveal the real source of the error (for

example, it may be clear that two variables of very di�erent data types may not

be added together, but the bug that causes either variable to be of that di�erent

41



4.7 The Pyvolution Software Package

datatype is not identified). Thus, whereas the error messages may be well written for

most other algorithms, they are rendered far too cryptic to help debug a GA.

Further, due to the amount of data that a GA works with on the stack, traditional

print-debugging (or logging) would also be infeasible as the signal-to-noise ratio in

the debug logs would be too low to be useful to a programmer.

One particularly di�cult bug was found to be caused by mistyping if a>b: a,b =

b,a as if a<b: a,b = b,a in the crossover function for the GA solving the trav-

eling salesman problem [21]. This had the e�ect of causing this error, mid evolution:

IndexError: pop from empty list. This is because the correctly implemented

crossover function, despite implementing its specification accurately, made certain

assumptions that were incorrect. These assumptions were incorrect due to the afore-

mentioned mistyping. However, the raised IndexError does not provide any infor-

mation as to the source of this error.

Further, assuming that the GA runs without any errors, if the end result of a run

of the GA is unfavorable or unexpected, it is unclear as to whether this divergence

in expectations was caused by the stochastic nature of evolution (and incorrectly

programmed parameters thereof) or by faulty programming logic. As a result, im-

plementing contracts for each of the functions in this framework allows programmers

to catch errors in programming logic early, trace the error to the buggy function

in the program, and eliminate programming errors as the reason for unexpected re-

sults at the end of a run of the GA (assuming that the correct contracts have been

implemented).

4.7.4. A DbC Framework for Python

In order to implement DbC to this GA framework, two packages were evaluated.

These packages are reviewed in this section
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PyContract PyContract is a DbC package that allows a programmer to annotate

functions with contract expressions. The fact that its syntax allows for the devel-

opment of richer contract expressions makes up for the shortcomings of other DbC

frameworks, making it the preferred framework with which to implement DbC ex-

pressions for this package.

For example, the contract expressions in algorithm Algorithm 4.10 for a function that

multiplies two matrices denotes that:

1. The input parameter a is a nested list of positive row and column dimensions.

2. The input parameter b is an array of positive row and column dimensions.

3. The number of rows in b is equal to the number of columns in a.

a) This ensures that a and b are of compatible dimensionalities.

4. The function returns an array of M rows and P columns.

5. The inputs are unchanged

In addition, PyContract also allows for the expression of class invariants. These are

expressible with the inv declaration in the contract expressions along with referencing

self. However, there is a limitation to PyContract’s ability to express invariants in

functions. For example, it is not possible to express contracts about loop invariants

whose expressions contain variables that are not class variables, but are instead local

to the scope of the function itself. In order to express such invariants in this GA

framework, a hybrid approach using both PyContract and assert statements native

to Python were used.

As previously stated, the DbC implementation for this GA framework is a hybrid

of PyContract and assert statements native to the python programming language.

For example, the crossover function described in section sec. 4.7.2 has the contracts

shown in algorithm Algorithm 4.11 (explained in table 4.7.4).
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Table 4.2.: Explanations of Contracts in Algorithm 4.11

Contract Expression Explanation

pre :

The next block of indented expressions

are pre-conditions of this function

i s i n s t a n c e (p1 , l i s t )

p1 is a list

i s i n s t a n c e (p2 , l i s t )

p2 is a list

l en ( p1 ) == len ( p2 )

p1 and p2 have equal number of elements

so r t ed ( p1 ) == range ( l en ( p1 ) )

p1 is a permutation of {0, 1, 2, ..., L ≠ 1}

where L is the number in elements in p1

so r t ed ( p2 ) == range ( l en ( p2 ) )

p2 is a permutation of {0, 1, 2, ..., L ≠ 1}

where L is the number in elements in p2

post [ p1 , p2 ] :

The next block of indented expressions

are post-conditions of this function

on the variables p1 and p2

p1 == __old__ . p1

p1 remains unchanged as a result

of executing this function

p2 == __old__ . p2

p2 remains unchanged as a result

of executing this function

post :

The next block of indented expressions

are general post-conditions

of this function

i s i n s t a n c e (__return__ , l i s t )

A list is returned
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l en (__return__) == len ( p1 )

The number of elements in the returned

list

is equal to the number of elements in p1

id (__return__) not in

[ id ( p1 ) , id ( p2 ) ]

The returned list does not reside

in the same memory location

as either p1 or p2

f o r a l l (__return__ , lambda c i t y :

c i t y in p1 and c i t y in p2 )

Every element in the returned list

exists in both p1 and p2

l en ( s e t (__return__))==

len (__return__)

Every element in the returned list

occurs exactly once

Notice that there are no contracts that express invariants in the PyContract syntax.

This is because contractual invariant clauses may express invariants that refer to

only class variables. This does not include variables that are not bound to a defined

class but are still within the local scope of the function for which the contract is

written. Therefore, loop invariants that refer to loop counters cannot be checked using

PyContract. As a result, the second part of the hybrid implementation of contract

checking uses assert statements native to python to enforce invariants which express

properties of non-class-variables within the local scope of the function. For example,

contractual loop invariants are expressed in Algorithm 4.12.

These loop invariant contract expressions check to ensure that the invariant is True

and the hyp. guard is False in every iteration of the while-loop.

It is important to note that GAs themselves usually have a long runtime. Furthermore,

contract checking implies that every time a function is called, the pre-conditions,

post-conditions and invariants of that function are verified. In addition, checking
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post-conditions in this framework, especially against values of variables before the

execution of the function requires making a copy of the stack before each execution.

The result is a drastic increase in the runtime of these functions, explicitly because

of contract checking. In order to alleviate such e�ects of DbC on the GA framework,

a new configuration parameter was introduced into the framework. This parameter

(named testmode) is a boolean flag, which when set True forces contract checking on

all functions for which a contract has been written. When this flag is set False, the

contracts are not checked, allowing the GA framework to operate at its maximal e�-

ciency without being interrupted by contract checking [22]. Therefore, the ideal usage

of a simulation using this framework (now augmented with DbC) would be to run

the simulation once for a very short period of time (evolutionary time, not realtime)

to ensure that all contracts are being followed. Once it is clear that all contracts are

being followed, then the simulation may be run for the required (presumably longer)

period of time without contract checking, so that it may run at an e�ciency that is

not hindered by contract checking.

A list of all contracts implemented in this framework is available in the o�cial docu-

mentation of the Pyvolution package [22].

4.8. Summary

The hybrid algorithm uses an ES to recursively classify target paths into bins, based

on similarity between target paths. Each bin is assigned a seed member from the

population, based on the generalizability of the seed to each member of the bin. This

seed is then mutated several times to form the next generation of the population,

and the ES continues. This continues until there is exactly one tartget path in a

bin, at which time a GA is run with the then current population for that bin. This

form of recursive clustering and seed selection based on generalizability combats the

ine�ciencies due to unlearning, faced by the OFA method; and the ine�ciencies due

to redundant relearning, faced by the OFE method.
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This hybrid evolutionary algorithm is implemented using the Pyvolution evolutionary

algorithms framework; the CFG of the SUT is obtained using the CFG software

package.
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Figure 4.1.: Full Process Workflow
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Algorithm 4.3 Path Generator’s Helper Function
1: function pathgenHelper(G=(V,E), scopes, paths, start, end, curr)
2: answer Ω new empty array
3: if curr belongs to the current scope (indicated by start and end) then

4: if |{p œ paths|p0 = 0}| = 0 then

5: currPath Ω new singleton array containing curr
6: if {(u,v) œ E|u} = ÿ or {(u,v) œ E|u} = {NULL} then

7: return new singleton array containing currPath
8: end if

9: for v œ {v|(u,v) œ E & u=curr} do

10: if v Æ curr then

11: if v = NULL then

12: Add -v to currPath
13: Add currPath to answer
14: elseadd currPath to answer
15: end if

16: else

17: for path œ pathGenHelper(G, scopes, paths, start, end, v)
do

18: Concatenate currPath with path
19: Add currPath to answer
20: end for

21: end if

22: end for

23: return answer
24: else

25: for path œ {p œ paths|p0 = curr} do

26: currPath Ω memcpy(currPath) for path in pathGenHelper(G,
scopes, paths, start, end, currPath[-1])

27: for path œ pathGenHelper(G, scopes, paths, start, end,
currPath|currPath|≠1) do

28: Concatenate the array comprised of all but the first element of
currPath to currPath

29: Add currPath to answer
30: end for

31: end for

32: return answer
33: end if

34: else

35: if curr = NULL then

36: return new vector containing an empty vector
37: else

38: return new vector containing a singleton vector containing ≠|curr|
39: end if

40: end if

41: end function
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Algorithm 4.4 The Path Generator Algorithm
1: function pathGenerator(G=(V,E), scopes, root) Û the "root" parameter

defaults to NULL, if it is not specified
2: answer Ω new empty vector
3: paths Ω new empty vector
4: rootWasNull Ω FALSE

5: for scope œ scopesscope do

6: if scope does not contain any scopes within itself then

7: if scope0 is a terminal node in the CFG of the SUT or a function
definition node then

8: toor leftarrow first element of {s œ scopesscope|s ”= NULL}
9: if toor contains any scopes within itself then

10: callWithScopes Ω new HashMap
11: for scope œ keys of scopes|k = toorork = toor do

12: if scope ”œ keys of callWithScopes then

callWithScopesscope Ω ÿ
13: end if

14: callWithScopesscope Ω callWithScopesscope
t scopesscope

15: pgpaths Ω pathGenerator(G, callWithScopes, toor)
16: end for

17: else

18: tStart Ω toor0
19: tEnd Ω toor1
20: end if

21: Add pgpaths to answer
22: end if

23: else

24: concatenate pathGenerator(G, scopes, scope) to paths
25: end if

26: end for

27: Add pathGenerator(G, scopes, scope) to answer
28: if rootWasNULL = NULL then

29: funcalls Ω {path œ answer|path0 ”= 0}
30: answer Ω answer \ funcalls
31: loopingPaths Ω {path œ answer|path|path|≠1 < 0}
32: tempAnswer Ω new empty array
33: answer Ω answer \ loopingPaths
34: while |loopingPaths| ”= 0 & ÷(p œ loopingPaths| ” ÷(n œ p|n = |p|p|≠1|))

do

35: for loopingPath œ loopingPaths do

36: extensions Ω {f œ funcalls||f0| = |loopingPath|loopingP ath|≠1|}
37: if |extensions| > 0 then

38: append a new empty vector to extensions
39: end if

40: for extension œ extensions do

41: loopingPath Ω memcpy(loopingPath)
42: concatenate all but the first element of extension to loopingPath
43: breakMe Ω false

44: while breakMe ”= false and

tempLoopingPath|tempLoopingP ath|≠1 < 0and ” ÷(n œ
tempLoopingPath0...|tempLoopingP ath≠1||n = tempLoopingPath|tempLoopingP ath≠1|)
do

45: X Ω |tempLoopingPath≠1|
46: Y Ω |the element preceding the second last negative number in tempLoopingPath|
47: if X.Y contains outgoing edges in G then

48: toor0 Ω |the element in tempLoopingPath following Y |
49: toor1 Ω toor0
50: Replace the last element in tempLoopingPaths with its

absolute value
51: Replace the second last negative element in tempLoop-

ingPaths with its absolute value
52: toorParent Ω then immediately enclosing scope of toor
53: if ÷(v œ V |toor0 < v < toor0 + 1) then

54: toor Ω a subscope of toor
55: callWithScopes Ω all mappings for parent and child

scopes where toor is the parent or one of the children
56: for pgh œ pathgenhenper(G, callWithScopes,

paths, toor0, toor1, the next outgoing node from X.Y) do

57: add to answer, the concatenation of all but the last
last element of tempLoopingPath and pgh

58: end for

59: else

60: for pgh œ pathgenhenper(G, scopes, paths, toor0,
toor1, the next outgoing node from X.Y) do

61: add to answer, the concatenation of all but the last
last element of tempLoopingPath and pgh

62: end for

63: end if

64: break

65: else

66: extensions Ω {f œ funcalls||funcall0| =
|tempLoopingPath|tempLoopingP ath|≠1|}

67: for extension œ extensions do

68: Add to answer, the concatenation of all but the last
element of extension to tempLoopingpath

69: end for

70: break

71: try

72: temp Ω an array of all but the first element of the next
extension in extensions

73: concatenate temp to tempLoopingPath
74: catch IndexError

75: do nothing
76: end try

77: end if

78: end while

79: end for

80: end for

81: for loopingPath œ answer do last Ω the last element of tempLooping-
Path

82: if last œ an array containing all but the last element of tempLoop-
ingPath then

83: Set all elements (except for the last one) in tempLoopingPaths
to their absolute values

84: end if

85: end for

86: loopingPaths Ω {p œ answer|the first element of p is 0 and the absolute value of the last element of p does not exist in the rest of p}
87: answer Ω answer \ loopingPaths
88: end while

89: loopingPaths Ω paths in answer if the first node is 0 and the last node is
negative and the absolute value of the last node exists elsewhere in the path

90: answer Ω answer \ loopingPaths
91: tails Ω {the subsection of the path starting with the first instance of the absolute value of the last element of path|path œ

answer})
92: for loopingPath œ loopingPaths do

93: tempSpace Ω new empty array
94: head Ω the first elements of loopingPath, upto but not including the

first occurrence of the absolute value of the last element
95: tail Ω the rest of loopingPath, except the last element
96: permPaths Ω {t œ tails|t ”= tail, t0 = tail0}
97: allPermutations Ω all r-length permutations of permPaths, for r = 0,

1, ..., |permPaths|
98: for permutation œ allPermutations do

99: add to tempSpace, the concatentation of head, tail and permutation
100: end for

101: enders Ω {the subsequence of a beginning with the first occurrence of the absolute value of the last element of loopingPath|a œ
answer, the absolute value of the last element of loopingPath exists in a}

102: if |enders| > 0 then

103: tempSpace Ω {the concatenation of a and e|a œ tempSpace, e œ
enders}

104: end if

105: Add the elements of tempSpace to tempAnswer
106: end for

107: Add the elements of tempAnswer to tempSpace
108: end if

109: return answer
110: end function
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4.8 Summary

Figure 4.2.: Initialization and Seeded ES Algorithm

Algorithm 4.5 Classifying Target Paths into Bins
1: function binningAlgorithm(paths, threshold)
2: bins Ω {}
3: similarities Ω computeRelativeSimilarities(paths)
4: for p1 œ keys of similiarities do

5: bin Ω {p1}
6: for p2 œ similarities[p1] do

7: if similarities[p1][p2] Ø threshold then

8: bin Ω bin t {p2}
9: for p œ {keys of similarities|p ”= p1} do

10: if p2 œ similarities[p] then

11: similarities[p] Ω {path œ similarities[p]|path ”= p1}
12: end if

13: end for

14: end if

15: end for

16: bins Ω bins t{bin}
17: Remove p1 from similarities
18: end for

19: end function

20: return bins
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4.8 Summary

Figure 4.3.: The SeededGA Algorithm
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4.8 Summary

Figure 4.4.: Process flow of Recursive Binning and Seed Finding

Algorithm 4.6 Computing Relative Similarities among Paths
1: function computeRelativeSimilarities(paths)
2: answer Ω new HashMap
3: for (p1, p2) œ {(p, q) œ paths ◊ paths|p ”= q} do

4: rawSimilarity Ω computeAbsoluteSimilarity(p1, p2)
5: totalSimilarity Ω q

pœpaths computeAbsoluteSimilarity(p1,p) +
q

pœpaths computeAbsoluteSimilarity(p2,p)

6: answer[p1][p2] Ω rawSimilarity
totalSimilarity

7: answer[p2][p1] Ω rawSimilarity
totalSimilarity

8: end for

9: return answer
10: end function
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4.8 Summary

Algorithm 4.7 Computing Absolute Similarities among Paths
1: function computeAbsoluteSimilarity(p1, p2)
2: matrix Ω computeSimilarityMatrix(p1, p2)
3: return

max(matrix)
maxlength(p1,p2)

4: end function

Algorithm 4.8 Computing Similarity Matrix
1: function computeSimilarityMatrix(p1, p2)
2: for i Ω 1 ... max(|p2| ≠ |p1|, 0) do

3: p1 Ω p1
t NULL

4: end for

5: for i Ω 1 ... max(|p2| ≠ |p1|, 0) do

6: p2 Ω p2
t NULL

7: end for

8: answer Ω
0.0 . . . 0.0
... . . . ...

0.0 . . . 0.0
¸ ˚˙ ˝

|p1|

Z
__̂

__\
|p1|

9: for r Ω 1 ... |p1| ≠ 1 do

10: for c Ω 1 ... |p1| ≠ 1 do

11: if p1[r ≠ 1] == p2[c ≠ 1] then

12: answer[r][c] Ω answer[r-1][c-1] +1
13: else

14: answer[r][c] Ω 0.0
15: end if

16: end for

17: end for

18: return answer
19: end function
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Algorithm 4.9 Computing the Seed Individual of a Bin of Target Paths
1: function seedFinder(individuals, targetPaths, tracer, tracerParams)
2: bestSeed Ω NULL
3: seedSimilarity Ω 0
4: for individual œ individuals do

5: inputVector Ω individual[0]
6: inputVector Ω Decode binary representation into input parameters
7: inducedPath Ω trace(SUT, inputVector)
8: inTarget Ω inducedPath œ targetPaths
9: Add inducedPath to targetPaths

10: relativeSimilarities Ω values of computeRelativeSimilari-
ties(targetPath)[inducedPath]

11: averageRelativeSimilarity Ω
q relativeSimilarities
|relativeSimilarities|

12: if inTarget == FALSE then

13: Remove inducedPath from targetPaths
14: end if

15: if averageRelativeSimilarity Ø seedSimilarity then

16: bestSeed Ω individual
17: seedSimilarity Ω averageRelativeSimilarity
18: end if

19: end for

20: return encoded version of bestSeed
21: end function

Algorithm 4.10 Contracts for a Matrix Multiplication Function in PyContract

1 def matrix_multiply ( a , b ) :
2 ’ ’ ’ M u l t i p l i e s two matr ices t o g e t h e r .
3 pre :
4 i s i n s t a n c e (a , array )
5 i s i n s t a n c e ( b , array )
6 l en (a ) > 0
7 l en (a [ 0 ] ) > 0
8 l en ( b ) == len (a [ 0 ] )
9 pos t :

10 __old__. a == a
11 __old__. b == b
12 i s i n s t a n c e (__return__ , array )
13 l en (__return__) == len (a )
14 l en (__return__ [ 0 ] ) == len ( b [ 0 ] )
15 ’ ’ ’
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4.8 Summary

(a) Concatenating Three Genes into One Chromosome

(b) Creating a Single Gene in a Chromosome

Figure 4.6.: Creating a Single Individual Encoding 3 Input Variables

Figure 4.7.: Generating the Initial Population
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4.8 Summary

Figure 4.8.: Computing the Fitness of an Individual Against a Specific Target Path

Algorithm 4.11 Contracts for the Crossover function for the Traveling Salesman
Problem

1 def i n j e c t i o n c o (p1 , p2 ) :
2 " " "
3 pre :
4 i s i n s t a n c e (p1 , l i s t )
5 i s i n s t a n c e (p2 , l i s t )
6 l en ( p1 ) == len ( p2 )
7 so r t ed ( p1 ) == range ( l en ( p1 ))
8 so r t ed ( p2 ) == range ( l en ( p2 ))
9 pos t [ p1 , p2 ] :

10 p1 == __old__. p1
11 p2 == __old__. p2
12 pos t :
13 i s i n s t a n c e (__return__ , l i s t )
14 l en (__return__) == len ( p1 )
15 i d (__return__) not in [ id ( p1 ) , id ( p2 ) ]
16 f o r a l l (__return__ , lambda c i t y : c i t y in p1 and c i t y in p2 )
17 l en ( s e t (__return__ )) == len (__return__)
18 " " "

Algorithm 4.12 Contracts for the Crossover function for the Traveling Salesman
Problem

1 def runTSPGA( kwargs ) :
2 . . .
3 while g < maxGens :
4 i f testmode :
5 a s s e r t g < maxGens
6 a s s e r t bes t [ 1 ] < t a r g e t s c o r e
7 . . .
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5. Parametric Analysis and Discussion

5.1. The Benchmark SUTs

In order to test the parameters of the hybrid algorithm proposed in this thesis, three

benchmark problems were used as SUTs. These SUTs and their respective CFGs are

listed in this section. The triangle classification algorithm (Algorithm 5.1) is a com-

monly used benchmark algorithm in software testing, while the bubble-sort algorithm

(Algorithm 5.2) is a more complex example of software likely to be encountered in

the real world. On the other hand the simplex algorithm (Algorithm 5.3) is a SUT

used to demonstrate one property of the hybrid algorithm to be discussed in further

sections of this chapter.

Algorithm 5.1 The Triangle Classification Algorithm
1: function classify(x,y,z)
2: if x<y+z & y<z+x & z<x+y then

3: if x”=y & y”=z & z ”=x then

4: return Scalene
5: else

6: if x=y=z then

7: return Equillateral
8: else

9: return Isosceles
10: end if

11: end if

12: else

13: return NotATriangle
14: end if

15: end function
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5.2 Experimental Data

start

2

end

13 3

4 6

7 9

Figure 5.1.: The CFG of Algorithm 5.1

5.2. Experimental Data

The two current state of the art algorithms, namely the OFA and the OFE were run

on each benchmark SUT 30 times in order to acquire statistically significant data (for

these are stochastic algorithms and therefore, it is unlikely that any two distinct runs

are exactly alike). Similarly, the hybrid algorithm proposed in this thesis was also

run on each benchmark SUT 30 times. Performance metrics from these runs were

gathered and are presented in the graphs and tables of this section. The SUTs and

parameter sets in these graphs are numbered. The numbered SUTs and parameter
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5.2 Experimental Data

Algorithm 5.2 The Bubble-Sort Algorithm
1: function bubbleSort(L)
2: for i=1 æ |L| do

3: for j=i + 1 æ |L| do

4: if L
j

> L
j+1 then

5: L
i

Ω L
i+1

6: L
i+1 Ω L

i

7: end if

8: end for

9: end for

10: end function

sets and their corresponding values are listed in Table Tab. 5.1 on page 60. In order to

determine the best similarity threshold for the binning aspect of the hybrid algorithm,

various values within a subrange of [0, 1] were experimented with. These values were

used in parameter sets as shows in Table Tab. 5.1 on page 60.

Table 5.1.: Identifying Parameter Sets, SUTs, and Algorithms

(a) Identifying Parameter Sets

Parameter Set initThreshold midThreshold
1 0.1 0.6
2 0.1 0.7
3 0.1 0.8
4 0.2 0.6
5 0.2 0.7
6 0.2 0.8
7 0.3 0.6
8 0.3 0.7
9 0.3 0.8

(b) Identifying SUTs

SUT ID SUT Name
1 Triangle Classification
2 Bubble-sort
3 Simplex

(c) Identifying Algorithms

Algorithm ID Algorithm
1 Hybrid
2 OFA
3 OFE

5.2.1. Selecting the Best Parameters for the Hybrid Algorithm

Statistics on some performance metrics of the hybrid algorithm are shown in Figure

Fig. 5.4 on page 70.
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5.2 Experimental Data
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Figure 5.2.: The CFG of Algorithm 5.2

Figure 5.4b on page 70 shows that parameter sets 1,2,3,5,7,9 cover approximately

the same percentage of target paths in each SUT, while Figure 5.4a on page 70 shows

that parameter set 2 has the lowest variance (or close enough to the lowest variance)

and tightest (95%) confidence interval for the number of fitness evaluations consumed.

Thus, it is considered the best parameter set of the 9 that were experimented with.

The fact that all parameter sets are approximately equi-functional (as demonstrated

by Figure Fig. 5.5 on page 71) demonstrates the robustness of the hybrid algorithm

in its ability to generalize to a neighborhood of parameters for any SUT.

Having thusly identified the best parameter set for the hybrid algorithm, it must now
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5.2 Experimental Data

Algorithm 5.3 The Simplex Algorithm
1: function simplex(a,b,c)
2: if a + b Æ c ‚ b + c Æ a ‚ c + b Æ a then

3: return condition1
4: else if x = y = z then

5: return condition2
6: else if x ”= y ”= z ”= x then

7: return condition3
8: else if a = b ”= c ‚ b = c ”= a ‚ c = a ”= b then

9: return condition4
10: else if a + b > 10 then

11: return condition5
12: else if a + b > 5 then

13: return condition6
14: else if a + c > 10 then

15: return condition7
16: else if a + c > 5 then

17: return condition8
18: else if b + c > 10 then

19: return condition9
20: else if b + c > 5 then

21: return condition10
22: end if

23: end function

be benchmarked against the OFA and OFE algorithms. The performance metrics of

the Hybrid compared with the OFA and OFE are shown in Figure Fig. 5.6 on page

72. From Figure Fig. 5.6 on page 72, it is clear that the hybrid algorithm discovers

at least as many paths as the OFA or OFE algorithms and performs more fitness

evaluations in less time when run on the more complex SUTs. The increased number

of fitness evaluations is potentially an artifact of the binning algorithm using the

same comparison methodology as the fitness function. However, even with this other

source of fitness evaluations, the hybrid performs fewer total fitness evaluations as the

recursive binning functionality forces it to consider progressively fewer target paths

in the fitness evaluation.

It can be argued at this point that the OFE algorithm starts with a population

for each target path and must therefore perform fewer fitness evaluations than the

hybrid algorithm. Such an argument would suggest that the data presented here is

incorrect. This argument is invalid as it is incomplete; while it is true that the OFE
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5.3 Properties of the Hybrid Algorithm

algorithm does start with each path being in its own bin (in the vernacular used

while describing the hybrid), each bin (containing a single target path) has its own

initial random population. This population occupies a large neighborhood, nor does it

converge quickly. On the other hand, the initial population of a seededGA algorithm

in the hybrid (the part of the hybrid algorithm invoked on singleton bins of target

paths ) densely occupies a small neighborhood. Further, it contains many duplicated

individuals, which leads to fewer distinct fitness function evaluations. Thus, the

observed behavior of the hybrid performing fewer fitness evalutions than the OFE

algorithm is not erroneous, but is a property of the hybrid algorithm itself.

5.3. Properties of the Hybrid Algorithm

5.3.1. Fewer Fitness Evaluations

As discussed in sec. 5.2.1, it is an expected property of the hybrid algorithm to perform

fewer fitness evaluations than the OFA and OFE algorithms. This is a desirable

property as it implies a faster turn around time in getting back results.

5.3.2. Local Optima

One of the problems faced by most stochastic algorithms is the di�culty of escaping

a local optimum. Indeed, this is a problem faced by the herein presented hybrid

algorithm as well. However, the e�ects of this problem on this algorithm are some-

what mitigated by the nature of the similarity measures used to compute the fitness

function. The fitness function computes the similarity of the path induced by an in-

dividual to the target path of that GA. Since there may be many input vectors (and

therefore many individuls) that could induce the target path, the GA is considered

to be working in a multi-modal fitness landscape. However, since all individuals that

induce the target path have the same fitness, discovering any of them would su�ce

as a termination condition.
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5.3 Properties of the Hybrid Algorithm

The only remaining issue concerning local optima pertains to individuals, whose en-

odings represent a maximal (not maximum) fitness value (individuals that cannot

be made to induce paths that are more similar to the target path with only sim-

ple changes made to their encodings). However, due to the ESs ability to search

the neighborhood around the seed individual thoroughly, the GA is arguably primed

with a su�ciently diverse population that would allow for crossover and mutation

operations to facilitate the escape from local optima in the fitness landscape.

5.3.3. Parallelizability

In the recursive binning behavior of this hybrid algorithm, the recursive seededES and

seededGA steps are computed on each bin independently of the others. Therefore,

this hybrid algorithm is highly parallelizable. It is worth noting that this property is a

significant improvement over the OFA algorithm, which is no more parallelizable than

a classical GA. On the other hand, the OFE algorithm is also highly parallelizable,

but the hybrid requires demonstrably lower CPU time (as seen in Figure 5.6b on

page 72), which means that in a highly parallel system, it will still outperform the

OFE.

Further, due to the definition of the binning algorithm and its dependence on the

similarity threshold thereof, it is possible for the hybrid algorithm to generate sin-

gleton bins of target paths while simultaneously recursively classifying target paths

in other bins. In such situations, one CPU may compute the seededGA algorithm

on a singleton set of target paths, while another continues to recursively classify the

remaining target paths into bins. Thus, it is possible in few cases for the first CPU

to complete the computation of the seededGA algorithm before the second computes

the next singleton bin of target paths. This a�ord the hybrid algorithm the property

that even though it is approximately as parallel as the OFE algorithm, it does not

always require as many CPUs as the OFE in order to finish its computations. Indeed

the number of CPUs required by the OFE to be fully parallel is a tight upper bound

on the number of CPUs required by the hybrid algorithm to be fully parallel.
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5.3 Properties of the Hybrid Algorithm

5.3.4. Inability to Stop Early

One of the observations from Figure 5.6c on page 72 and Figure 5.6b on page 72 is

that the hybrid algorithm performs poorly on the triangle classification SUT on the

elapsed runtime and number of fitness evaluations metrics. This is because, for very

simple SUTs, the inputs that induce the required target paths may exist in the initial

population. The OFA and OFE algorithms notice this and stop immediately. The

hybrid on the other hand, goes on to classify the target paths into bins, find a seed

for each bin and proceed with the rest of the algorithm until it does eventually find

the required individual that induces the target path. This is a shortcoming of the

hybrid algorithm. However, as seen in the various benchmarks in this section, this

shortcoming only applies to very small (almost trivial) SUTs, while the hybrid does

outperform both the OFA and the OFE in the more complex SUTs, to be expected

in the real world.

5.3.5. SUT Structure

The third benchmark SUT, namely the simplex algorithm is used to demonstrate one

of the properties of the hybrid algorithm. Indeed, this is a property of all evolutionary

algorithms that search for inputs that induce specific target paths. Recall from Figure

Fig. 4.4 on page 53 (repeated here for convenience in Figure Fig. 5.7 on page 73), that

the input vectors generated by the evolutionary algorithm are points in the input space

and the target paths that they are intended to induce are points in the path space. It

is therefore clear that the success of an evolutionary algorithm in discovering inputs

for target paths is a function of the semantic similarity between the two spaces. Thus,

an evolutionary algorithm will be more successful if a change of certain magnitude

and direction in the input space induces a change of similar magnitude and direction

in the path space. This is confirmed by the observation that all three algorithms (the

hydrid, OFA and OFE) perform consistently worse on the simplex SUT than they do

on the triangle classificaiton SUT. This is because small variations in the inputs to
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5.4 A Real World SUT

each SUT cause varying changes in each SUT.

The triangle classification SUT is composed of highly nested if-then-else state-

ments, wherein the nested conditions are subsets of (or stronger conditions upon) the

parent condition. This implies that crossover and mutation operations have a high

probability of generating individuals that induce paths, nested one level higher or

lower than the the ones that the current individuals induce. This is particularly use-

ful when analysing locality and theoretically discussing and analyzing the progression

of the evolutionary algorithm over time.

However, the simplex SUT is specifically not structured this way. As a result, small

variations in an individual’s encoding can have very profound e�ects on the induced

path. This is to say that there is likely a larger distance between induced paths (in the

path space) of two individuals that are much closer in the input space. As a result,

the crossover and mutation operations do not have the desired localized exploration

properties for the simplex SUT that they do for the triangle classification SUT. This

is confirmed by the fact that all three evolutionary algorithms discovered more target

paths in the triangle classification SUT than in the simplex SUT1.

5.4. A Real World SUT

Having surpassed the other algorithms on classical benchmarking SUTs, the hybrid

was benchmarked against the OFA and OFE algorithms using a Hu�man encoder as

a SUT. The code and the CFG (of the implementation) for this SUT are shown in

Algorithm 5.4, Algorithm 5.5, Algorithm 5.6, Algorithm 5.7 and Figure Fig. 5.8 on

page 74.

Clearly, this is a more complex SUT and can well be expected to be found in the real

world. It was found that the hybrid algorithm outperformed both the OFA and the

OFE algorithms on the following metrics:

• percentage of target paths discovered
1see Section sec. 6.3 for how to deal with this problem
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5.5 Summary

Algorithm 5.4 The Hu�man Tree Maker
1: function makeTree(text)
2: characters Ω letterFrequencies(text)
3: characters Ω {(key, value) œ characters}
4: characters Ω characters1
5: while |characters| > 1 do

6: c2 Ω min
n[1][2]characters

7: c1 Ω min
n[1][2]{n œ characters|n ”= c2}

8: characters Ω characters \{c1}
9: characters Ω characters \{c2}

10: parent Ω {(c1[1][1] + c2[1][1], c1[1][2] + c1[1][2])}
11: parent Ω parent t{c1}
12: parent Ω parent t{c2}
13: characters Ω characters t parent
14: end while

15: return parent
16: end function

Algorithm 5.5 The Helper Function to encode

1: function _encode(char, tree)
2: root Ω tree.root
3: if root11 = char then

4: return ""
5: end if

6: if root1 ”= ÿ & char œ root211
then

7: return "0" + _encode(char, root2)
8: else

9: return "1"+ _encode(char, root3)
10: end if

11: end function

• elapsed runtime

• number of fitness function evaluations

This is proven by the graphs in Figure Fig. 5.9 on page 75. Note that even though the

hybrid algorithm performs fewer fitness evaluations, it discovers more target paths,

still outperforming the OFA and OFE algorithms.

5.5. Summary

It is clear that the hybrid algorithm proposed in this thesis outperforms the two

existing paradigms (OFA and OFE) in some ways. It is, however, not without its own
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5.5 Summary

Algorithm 5.6 The Encoding Function
1: function encode(text, tree)
2: answer Ω {}
3: for char d œ text do

4: cipher Ω _encode(char, tree)
5: answer Ω answer t{cipher}
6: end for

7: return string(answer)
8: end function

Algorithm 5.7 Main
1: function main(text)
2: tree Ω makeTree(text)
3: return encode(text, tree)
4: end function

shortcommings, such as its inability to stop early, etc (outlined in sec. 5.3), which are

promising areas for future work.
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Figure 5.3.: The CFG of Algorithm 5.3
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Figure 5.4.: The E�ects of Threshold Parameters on the Hybrid
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Figure 5.6.: Comparing Hybrid with OFA and OFE
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5.5 Summary

Figure 5.7.: Process flow of Recursive Binning and Seed Finding
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Figure 5.8.: CFG of Algorithm 5.7
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6. Conclusions and Future Work

6.1. Overview

As discussed in chapter 5, the hybrid algorithm proposed in this thesis is indeed

an improvement over the OFA and OFE algorithms. Further, since the preliminary

results of this thesis have been peer reviewed [23], it is accurate to claim that this

thesis presents a new solution to the studied problem, which outperforms the current

state of the art.

Further, chapter 5 shows that this algorithm works well for classification algorithms

(the triangle classification algorithm), sorting algorithm (the bubble-sort algorithm),

comparison algorithms (the simplex algorithm) and transformation algorithms (the

Hu�man encoding algorithm). These algorithms together form somewhat a spanning

set of the operations found in most modern deterministic software. Thus, it is logical

to conclude that good performance on these SUTs will yield similarly good perfor-

mance on real world SUTs composed of similar SUTs. Thus, it is expected that the

hybrid algorithm presented in this thesis will generalize well to most software in the

real world.

6.2. Summary of Contributions

This thesis presents a hybrid evolutionary algorithm, comprised of a Genetic Algo-

rithm (GA) and an Evolutionary Strategy (ES). It is the purpose of the ES to shape
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6.3 Future Work

the evolutionary population in such a way as to aid the GA by providing an ad-

equately diverse population in a neigborhood suspected of harboring a su�ciently

fit individual. When applied to a problem such as path coverage in software test-

ing (which is represented in a multi-modal fitness landscape), this hybrid algorithm

outperforms the current state of the art.

6.3. Future Work

It is worth noting that only deterministic software was used at SUTs in the results

presented in this thesis. It is therefore not guaranteed to perform comparably on non-

deterministic SUTs such as evolutionary algorithms, neural networks, etc. However,

it is acceptable to expect it to perform comparably on non-deterministic software that

uses a random seed for testing purposes. This is a useful avenue to pursue for future

work, as it would bring with it, the ability to test the software written for this thesis

itself.

Further, the hybrid algorithm could be improved upon by including the ability to

remove target paths from consideration if individuals that induce them have already

been generated; even before singleton bins of target paths are computed. This would

increase the e�ciency of the algorithm, especially in the cases of simpler SUTs such

as the triangle classification SUT.

Another possible improvement combines principles from static software testing and

compiler optimization technology that reorders lines of code [24]. Since the struc-

ture of the conditional statements does have an impact on the performance of the

algorithm, a system that performs static analysis to compute the predicates on each

line of code and subsequently reorder the lines of code in order to nest the predicates

themselves, would yield an improvement in the performance of the hybrid algorithm

as a whole. As mentioned in Chapter chapter 5, this is one of the reasons for the poor

performance of the hybrid algorithm on the simplex SUT.

The final improvement takes advantage of automated bug reporting systems such as
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6.3 Future Work

those used by modern web browsers [25] to automatically determine what target paths

need to be tested with high priority. Thus, the hybrid algorithm can automatically

be tasked with discovering inputs for that particular target path to generate a more

detailed bug report for the developers of the SUT.
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Appendix A.

The CFG Package

A.1. Motivation

The CFG (Control Flow Graph) package is designed to extract a CFG out of the

source code for a given SUT. Given that the SUT in this thesis is written in Python,

this is accomplished with the cfg package [26], presented in this appendix.

A.2. Overview

There are existing packages for the python programming language that compute a

call graph for the given source-code [27]. However, these packages do not allow for

extracting a CFG out of the source-code, despite the fact that they likely use such

a CFG internally. Further, the python interpreter itself (written in C) [28] converts

the source-code into a CFG, as an intermediary step in converting source-code into

machine code. However, this is done “on the fly” and therefore is not accessible either.

Thus, the cfg package was created and used in this thesis.

Since python is an interpreted language, it is possible to use built-in methods [29] to

obtain its AST (Abstract Syntax Tree). It is from this AST that the CFG is built.

Since the AST is tree data structure that contains pointers from parent nodes to child
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A.3 Source-code to XML

nodes, but not from child nodes to parent nodes, the AST is first converted into an

XML structure a�ords this functionality, which is then converted into a CFG. This

process is illustrated in Fig. A.1.

Figure A.1.: Converting Source-code to CFG

A.3. Source-code to XML

Given the source-code of the SUT, it is compiled using built-in methods of the python

programming language, and an AST is obtained. This AST is then converted into

XML with minimal modifications to aid the generation of the CFG. For example, the

SUT in Algorithm A.1 is characterized by the AST illustrated in Fig. A.2, which is

then converted into the XML document shown in Fig. A.3.

Algorithm A.1 A Simple Python SUT

1 def f ( x ) :
2 i f x > 0 :
3 return " p o s i t i v e "
4 else :
5 return " non≠p o s i t i v e "
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A.3 Source-code to XML

This XML is converted into a CFG. Since the general algorithm is too large to be

shown here, only the sections necessary to handle this XML is shown in Algorithm A.2.

Ultimately, once the parse function has finished execution, a CFG is created. This

CFG holds a representation of the graph shown in Fig. A.4.
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A.3 Source-code to XML

Figure A.2.: The AST of Algorithm A.1
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A.3 Source-code to XML

<?xml version=" 1 .0 " ?>
<func t i onde f>

1
<name>1</name>
< i f>

2
<compare>

2
<name>2</name>
<gt>gt</ gt>
<num>2</num>

</compare>
<return>3</ return>
<e l s e>

4
<return>5</ return>

</ e l s e>
</ i f>

</ func t i onde f>

Figure A.3.: The XML Derived from Fig. A.2

s

2

t

3 5

Figure A.4.: The CFG Generated from Fig. A.3
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A.3 Source-code to XML

Algorithm A.2 Converting Fig. A.3 to a CFG
1: class xmlToCFG
2: function initialize(xmlFilePath)
3: Û ‘self‘ describes the object itself, similar to ‘this‘ in Java
4: self.xml Ω root of the XML document
5: self.edges Ω new HashMap
6: self.last Ω line number of root
7: self.currScope Ω new array
8: self.funcstarts Ω ÿ
9: end function

10: function parse
11: self.scopes Ω self.scopes t{(0, largest line number in the XML)}
12: self.handleNode(self.xml)
13: end function

14: function handleNode(node)
15: curr Ω line number of node
16: if curr ”œ self.last then

17: for last in self.last do

18: add curr as an outgoing edge from last
19: remove last from self.last
20: end for

21: end if

22: add curr to self.last
23: self.HANDLERS[node.tag](node)
24: end function

25: function handleIf(node)
26: elseblock Ω last child of node
27: add the line number of the first child of elseblock as an outgoing node from

elseblock
28: for child œ { children of node | child ”= elseblock } do

29: self.handleNode(child)
30: end for

31: cache Ω memcpy(self.last)
32: add the line number of node to self.last
33: remove line numbers of all child nodes from self.last
34: for child œ children of elseblock do

35: self.handleNode(child)
36: end for

37: add the line number of the last line of node to self.last
38: self.last Ω self.last t cache
39: end function

40: function handleCondition(node)
41: for child œ children of node do

42: self.handleNode(child)
43: end for

44: end function

45: function handleReturn(node)
46: for child œ children of node do

47: self.handleNode(child)
48: end for

49: end function

50: end class 84



Appendix B.

Dynamic White Box Testing

B.1. Overview

White box testing is a software testing paradigm that uses the source code of the SUT

to test it. It is used to ensure that all parts of the code’s structure are executable

- to ensure code coverage. As such, there are several forms of white-box testing. In

each form, the SUT is converted into a control flow graph (CFG) - a mathematical

representation of the logical program flow of the SUT. In a CFG, each statement

is a node and sequential statements are connected by edges. Branching statements

(if-then-else statements, for-loops and while-loops) are characterized by mul-

tiple outgoing edges from a node, with conditions on each edge.

B.2. Node or Statement Coverage

This form of white box testing requires that each statement in the SUT’s code be

executed by at least one input vector from the set of test input vectors. While

this seems acceptable, it is trivial to show that this testing method is incomplete.

Consider the following example of a program that is said to implement the following

specifications:
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B.2 Node or Statement Coverage

Table B.1.: Specification for AlgorithmAlgorithm B.1

Parameter Value
Number of Inputs 2
Name of Input 1 A

Name of Input 2 B

Type of A int

Type of B int

Type of Output int

Output Value A/B if neither A nor B is 0. Else 0.

Suppose this specification is implemented in the SUT in Algorithm B.1.

Algorithm B.1 A Simple Program
1: function f(A,B)
2: if A==0 & B==0 then

3: return 0
4: else

5: return

A

B

6: end if

7: end function

The CFG for this SUT is presented in Fig. B.1

Figure B.1.: CFG for the SUT Presented in Algorithm B.1

where the statements represented by the nodes are presented in Tab. B.2

From the above description, it is clear that all nodes of the CFG will be covered by

the inputs presented in Tab. B.3.
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B.3 Edge Coverage

Table B.2.: Node-Statement Representation

Node Statement

s Start function
2 if (A == 0) AND (B == 0)

3 return 0

4 return A/B

t End function

Table B.3.: Inputs for Node Coverage

A B Path

0 0 (s,2,3,t)
0 1 (s,2,4,t)

Having covered all nodes of the SUT, the test suite comprised of the input vectors

presented in Tab. B.3 would declare the SUT bug-free. However, note that the input

vector (A=1, B=0) was not tested and would cause an error due to division-by-zero.

This is an error case, that is not caught by the test suite which declared this code to

be bug-free.

Thus, node coverage is not an adequate code coverage criterion for testing

B.3. Edge Coverage

Edge coverage is a stronger testing criterion than node coverage [6]. Similar to node

coverage, edge coverage attempts to execute all edges in the SUT’s code. This is to

say that a test suite T satisfies edge coverage if and only if for every edge e in the

CFG of the SUT, there exists a test case (i.e. a vector of inputs) t œ T such that the

path induced by executing the SUT on t contains e.

Using the same example as in sec. B.2, we can see that edge coverage is also incom-

plete. The two input vectors in the test suite, together cover all edges. Still, they miss

the fact that the input vector (A=1, B=0) would cause an error due to division-by-zero.
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B.4 Condition Coverage

B.4. Condition Coverage

Condition coverage is a stronger testing criterion than edge coverage [6]. This criterion

requires that every condition that can induce a path of execution in the SUT be

executed at least once by the test suite [6]. This is to say that a test suite T satisfies

condition coverage if and only if for each set of path predicates P in the paths of the

CFG of the SUT, there exists a test case (i.e. a vector of inputs) t œ T such that the

path induced by executing the SUT on t contains P .

However, in the above SUT, it is clear that this criterion is incomplete, just as the

edge coverage criterion is also incomplete. Since condition coverage is satisfied by the

test suite presented in sec. B.2, and that test suite has been shown to be incomplete,

condition coverage is also incomplete.

B.5. Path Coverage

Path coverage is one of the stronger testing criteria1, and is widely accepted as a

natural criterion of program testing completeness [8]. It requires that every path in

the CFG be executed at least once by the test suite. This is true despite the fact

that the presented test suite satisfies this criterion . As a result, this thesis focuses

on generating input vectors that satisfy path coverage. It is left to the tester of the

software to determine what percentage of all paths in the CFG need to be induced

by the inputs generated by the work presented in this thesis.

1See for background information on the di�erent forms of coverage in white-box testing
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Appendix C.

Evolutionary Algorithms

C.1. Genetic Algorithms

C.1.1. Overview

As outlined by Juang [30], a Genetic Algorithm (GA) encodes a candidate solution

to a problem in an individual of a population of such individuals. These indivuals

are composed of chromosomes, which encode parts of the candidate solution. After

initializing a random population of such individuals, these are evaluated for fitness

(i.e. a measure determining the optimality of the candidate solution in its ability

to solve the problem). Fit individuals are reproduced to the next generation of the

population. Further, all members of the current generation of the population undergo

probabilistic crossover and mutation operations so that parts of candidate solutions

may be combined with each other in the hope of creating a better individual (i.e. a

candidate solution) for the next generation. This process of reproduction, crossover

and mutation operations are repeated for several generations over a run of the GA.

The various components of a GA are explained in the following subsections.
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C.1 Genetic Algorithms

C.1.2. Chromosome

A chromosome is an encoding of a part (or the whole) of a candidate solution to

the given problem. It is typically implemented as an array, each segment of which is

considered a gene. In the context of discovering useful test input data, a chromosome

may encode an input vector (a vector of values - one per input variable in the SUT),

while each gene encodes a value for the corresponding input variable, as was done in

[31].

For example, Fig. C.1 shows a chromosome, using binary encoding, for the values of

the three inputs that form the input vector <3,4,5>.

Input 1 Input 2 Input 3

0 1 1 1 0 0 1 0 1

Figure C.1.: Example Chromosome for Input Vector <3,4,5>

C.1.3. Individual

An individual is a full representation of a candidate solution to the problem. There-

fore, an individual may be a single chromosome (in the event that a single chromosome

encodes a candidate solution entirely), or a collection of chromosomes.

The example in sec. C.1.2 can be equivalently implemented as a three-chromosome

individual as show in Fig. C.2.

Chromosome Value

1 0 1 1
2 1 0 0
3 1 0 1

Figure C.2.: Tri-Chromosome Individual for Input Vector <3,4,5>

C.1.4. Population Generation

In order to begin the process of evolution, the first generation of the population

needs to be synthesized. It is important that the first generation of the population
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C.1 Genetic Algorithms

cover as much of the search space as possible (be as diverse as possible), so that

the subsequent genetic operations (crossover and mutation operations) do not get

stuck in local optima; i.e. in order to ensure that there is still adequate diversity

in the encoding of the chromosomes that some genetic operations would allow the

GA to escape local optima situations. This is typically done by creating a random

initial population. For example, if the population were made up of single-chromosome

individuals and each chromosome was a bit string, n bits long, then each chromosome

for each individual is generated by concatenating the results of n calls to a random

single-bit generator1 [31].

C.1.5. Fitness

In order for a GA to evolve better individuals over time (i.e. individuals that repre-

sent better candidate solutions to the problem), there needs to be a measure of the

quality of each candidate solution. Such a measure is provided by an objective fitness

function. In the context of evolving test case data for path coverage (as mentioned

in sec. B.5), one possible fitness function for an individual encoding a full test suite

might be the percentage of all paths covered by the test suite. The actual fitness

function used in this thesis is explained in sec. 4.5.3.

C.1.6. Selection

In order to improve individuals over time, appropriate individuals must be selected

from the current population. Typically, a selection mechanism favors fit over unfit

individuals. Two such selection mechanisms are discussed in sec. C.1.7 and sec. C.1.8.

1Single bit generators are commonly found as part of programming languages or their associated
libraries
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C.1.7. Biased Roulette Wheel Selection

A biased roulette wheel selection models a situation where individuals bet on a

roulette wheel, and the winner will be chosen for reproduction (crossover and muta-

tion) operations. In order to bias the bets that the individuals place, each individual

is to bet on an entire section of the roulette wheel. The size of the section is directly

proportional to the fitness of the individual, relative to the population [8]. For ex-

ample, if a population consists of three individuals whose fitness scores are as shown

in Tab. C.1, the biased roulette wheel could be modeled along the continuous interval

[0, 1], for the individuals to place bets as shown in Tab. C.2.

Table C.1.: Relative Fitness of Individuals in a Population

Individual Raw Fitness Relative Fitness2

1 5 0.5
2 1 0.1
3 4 0.4

Table C.2.: A Biased Roulette-Wheel for the Individuals in Table Tab. C.1

Individual Section of the Roulette Wheel

1 0.0 - 0.5
2 0.5 - 0.6
3 0.6 - 1.0

After creating the biased roulette wheel and assigning sections for each individual

to place bets on, a selection operation is performed by picking a random number

in the interval. The individual that placed a bet on a section of the roulette wheel

containing this random number is determined to be the winner. Thus if the random

number was 0.506934, then Individual 2 is selected for mating operations.

C.1.8. Tournament Selection

A tournament selection is based on of the following parameters:

Tournament size (T) The size of the tournament to be conducted
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Number of winners (W) The number of winners of a tournament. Typically, this is

either 1 or 2; this number has a lower bound of 1 and an upper bound of T

This selection mechanism functions by sampling T individuals from the population

and selecting the best (fittest) W of them for mating operations [32]. The idea is

that fitter individuals have a higher probability of mating to produce children, which

will populate the next generation of the population of chromosomes. Note that this

selection mechanism guarantees that the T ≠W least fit individuals in any generation

of the population will never be selected for reproduction operations.

Thus, while this method is another way to implement fitness-proportional selection,

it is less forgiving that the biased roulette wheel selection mechanism, as a biased

roulette wheel does not make it impossible for the least fit T ≠ W individuals to be

selected for reproduction operations (even though this probability will be very low in

a biased roulette-wheel selection).

C.1.9. Crossover

In order to combine components of known candidate solutions to form new candidate

solutions, a process named crossover is employed. During crossover, corresponding

parts of corresponding pairs of chromosomes from two parent individuals are recom-

bined to form the chromosomes of the child individual. While several methods for

crossover do exist and are used, two are examined in sec. C.1.9.1 and sec. C.1.9.2.

C.1.9.1. Uniform Crossover

Uniform crossover generates a child chromosome in which each gene is a copy of the

corresponding gene in one of the parents. Which parent a particular gene comes from

is decided probabilistically. For example, suppose:

1. the two parents (p1 and p2) were as shown in Figure C.3a on page 94

2. the probability of selecting a gene from p2 is 0.5
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Then, the probability of the first gene in the child from crossover being A2 is 0.5.

Thus, the probability of generating the child shown in C.3b as a result of crossover

is 0.0625.

p1 A1 B1 C1 D1
p2 A2 B2 C2 D2

(a) Hypothetical Parents of
Crossover

Child A1 B2 C1 D2

(b) Possible Child of Crossover

Figure C.3.: Uniform Crossover Example

Indeed, the probability of generating one of the parents as a result of crossover is

also 0.0625. This crossover technique was used in generating test inputs for testing a

vehicular cruise control system [31].

C.1.9.2. One Point Crossover

One point crossover generates a child chromosome by concatenating complement seg-

ments of corresponding chromosomes of the parent individuals. The point of segmen-

tation (called the crossover point) is selected at random. For example, suppose the

two parents (p1 and p2) were as shown in Figure C.3a on page 94, it is possible that a

child chromosome would be (if the crossover point were between the third and fourth

gene) as shown in Fig. C.4.

Child A1 B1 C1 D2

Figure C.4.: Possible Child of One-Point Crossover

C.1.10. Mutation

Mutation is a process by which a chromosome is altered slightly in order to create

a variant of itself. This is done in order to allow the GA to escape local optima by

allowing the chromosome, hence the individual, to move to a di�erent point in the

solution space. For example, if a chromosome is represented as a binary bit-string, a

mutation operation would flip the value of a random bit in this bit-string. This can

be observed in the fourth gene in Fig. C.5.

94



C.2 Evolutionary Strategy

Before Mutation 0 1 0 0
After Mutation 0 1 0 1

Figure C.5.: Possible Mutation

C.2. Evolutionary Strategy

An Evolutionary Strategy (ES) is an evolutionary algorithm similar to a GA. The

main di�erence is that ESs do not use crossover operators. Instead, once the initial

random population has been generated, it then advances from one generation to the

next by selecting the fittest individual of that generation and mutating it several

times in order to form the individuals of the next generation of that population. This

is performed over several generations, to execute one run of the ES.
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